52.
A physical quantity of the dimensions of length that can be formed out of $$c,G$$ and $$\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}$$ is [$$c$$ is velocity of light, $$G$$ is universal constant of gravitation and $$e$$ is charge]
A
$${c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
B
$$\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
C
$$\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}$$
D
$$\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
Let dimensions of length is related as,
$$\eqalign{
& L = {\left[ c \right]^x}{\left[ G \right]^y}{\left[ {\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^z} \Rightarrow \frac{{{e^2}}}{{4\pi {\varepsilon _0}}} = M{L^3}{T^{ - 2}} \cr
& L = {\left[ {L{T^{ - 1}}} \right]^x}{\left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]^y}{\left[ {M{L^3}{T^{ - 2}}} \right]^z} \cr
& [L] = \left[ {{L^{x + 3y + 3z}}\,{M^{ - y + z}}\,{T^{ - x - 2y - 2z}}} \right] \cr} $$
Comparing both sides
$$z = y = \frac{1}{2},x = - 2\,\,{\text{Hence,}}\,L = {c^{ - 2}}{\left[ {G \cdot \frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
53.
In a simple pendulum experiment, the maximum percentage error in the measurement of length is $$2\% $$ and that in the observation of the time- period is $$3\% .$$ Then the maximum percentage error in determination of the acceleration due to gravity $$g$$ is
As we know, time period of a simple pendulum
$$T = 2\pi \sqrt {\frac{L}{g}} \Rightarrow g = \frac{{4{\pi ^2}L}}{{{T^2}}}$$
The maximum percentage error in $$g$$
$$\eqalign{
& \frac{{\Delta g}}{g} \times 100 = \frac{{\Delta L}}{L} \times 100 + 2\left( {\frac{{\Delta T}}{T} \times 100} \right) \cr
& = 2\% + 2\left( {3\% } \right) = 8\% \cr} $$
54.
The frequency of vibration $$f$$ of a mass $$m$$ suspended from a spring of spring constant $$k$$ is given by a relation of the type $$f = C{m^x}{k^y},$$ where $$C$$ is a dimensionless constant. The values of $$x$$ and $$y$$ are
Torque $$\tau = r \times F$$
Dimensions of $$\tau = {\text{dimension of}}\,r \times {\text{dimension of }}F$$
$$\eqalign{
& = \left[ L \right]\left[ {ML{T^{ - 2}}} \right] \cr
& = \left[ {M{L^2}{T^{ - 2}}} \right] \cr} $$
57.
In a particular system, the unit of length, mass and time are chosen to be $$10\,cm,\,10\,g$$ and $$0.1\,s$$ respectively. The unit of force in this system will be equivalent to
$$\eqalign{
& {\text{Energy carried by photon is given by }}E = hv \cr
& \Rightarrow h = {\text{Planc's constant}} = \frac{E}{v} \cr
& \therefore \left[ h \right] = \frac{{\left[ {M{L^2}\;{T^{ - 2}}} \right]}}{{\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^2}\;{T^{ - 1}}} \right] \cr
& {\text{and}}\,I = {\text{moment of inertia }} = M{R^2} \cr
& \Rightarrow \left[ I \right] = \left[ {M{L^2}} \right] \cr
& {\text{Hence,}}\,\frac{{\left[ h \right]}}{{\left[ I \right]}} = \frac{{\left[ {M{L^2}\;{T^{ - 1}}} \right]}}{{\left[ {M{L^2}} \right]}} = \left[ {{T^{ - 1}}} \right] \cr
& = \frac{1}{{[\;T]}} = {\text{dimension of frequency}} \cr} $$ Alternative
$$\eqalign{
& \frac{h}{I} = \frac{{\frac{E}{v}}}{I} \cr
& = \frac{{E \times T}}{I} = \frac{{\left( {\frac{{kg - {m^2}}}{{{s^2}}}} \right) \times s}}{{\left( {kg - {m^2}} \right)}} \cr
& = \frac{1}{{\;s}} = \frac{1}{{{\text{ time }}}} = {\text{frequency}} \cr} $$
Thus, dimensions of $$\frac{h}{I}$$ is same as that of frequency.
60.
The electric field is given by $$\vec E = \frac{A}{{{x^3}}}\hat i + By\hat j + C{z^2}\hat k.$$ The SI units of $$A,B$$ and $$C$$ are respectively: [where $$x,y$$ and $$z$$ are in $$m$$ ]
A
$$\frac{{N - {m^3}}}{C},\frac{V}{{{m^2}}},\frac{N}{{{m^2} - C}}$$
B
$$V - {m^2},\frac{V}{m},\frac{N}{{{m^2} - C}}$$
C
$$\frac{V}{{{m^2}}},\frac{V}{m},\frac{{N - C}}{{{m^2}}}$$
D
$$\frac{V}{m},\frac{{N - {m^3}}}{C},\frac{{N - C}}{m}$$