Question
$$P$$ is a point on the $$y$$–$$z$$ plane, making equal angles with the $$y$$-axis and $$z$$-axis and at a distance $$2$$ from the origin. $$M$$ is the foot of the perpendicular from $$P$$ to the plane $$3x + y - \sqrt 2 z = 2\sqrt 2 .$$ The coordinates of $$M$$ are :
A.
$$\left( {1,\,\frac{5}{3},\,\frac{{\sqrt 2 }}{3}} \right)$$
B.
$$\left( {1,\, - 3,\, - 2} \right)$$
C.
$$\left( {\frac{1}{{\sqrt 2 }},\,\frac{5}{{3\sqrt 2 }},\,\frac{1}{3}} \right)$$
D.
none of these
Answer :
none of these
Solution :
$$\eqalign{
& P = \left( {0,\,2\cos \,{{45}^ \circ },\,2\sin \,{{45}^ \circ }} \right) = \left( {0,\,\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right). \cr
& {\text{If }}M = \left( {\alpha ,\,\beta ,\,\gamma } \right){\text{ then}} \cr
& 3\alpha + \beta - \sqrt 2 \gamma \, = 2\sqrt 2 {\text{ and }}\frac{{\alpha - 0}}{3} = \frac{{\beta - \frac{1}{{\sqrt 2 }}}}{1} = \frac{{\gamma - \frac{1}{{\sqrt 2 }}}}{{ - \sqrt 2 }} \cr
& \therefore \frac{\alpha }{3} = \frac{{\beta - \frac{1}{{\sqrt 2 }}}}{1} = \frac{{\sqrt 2 \gamma - 1}}{{ - \sqrt 2 }} \cr
& = \frac{{3\alpha + \beta - \frac{1}{{\sqrt 2 }} - \left( {\sqrt 2 \gamma - 1} \right)}}{{9 + 1 - \left( { - 2} \right)}} \cr
& = \frac{{2\sqrt 2 - \frac{1}{{\sqrt 2 }} + 1}}{{12}} \cr
& = \frac{{3 + \sqrt 2 }}{{12\sqrt 2 }} \cr
& \therefore \,\,\alpha = \frac{{3 + \sqrt 2 }}{{4\sqrt 2 }}, \cr
& \beta = \frac{1}{{\sqrt 2 }} + \frac{{3 + \sqrt 2 }}{{12\sqrt 2 }} = \frac{{15 + \sqrt 2 }}{{12\sqrt 2 }}, \cr
& \gamma = \frac{1}{{\sqrt 2 }}\left\{ {1 - \frac{{6 + 2\sqrt 2 }}{{12\sqrt 2 }}} \right\} = \frac{{10\sqrt 2 - 6}}{{24}} \cr} $$