Question

$$P$$ is a point on the $$y$$–$$z$$ plane, making equal angles with the $$y$$-axis and $$z$$-axis and at a distance $$2$$ from the origin. $$M$$ is the foot of the perpendicular from $$P$$ to the plane $$3x + y - \sqrt 2 z = 2\sqrt 2 .$$     The coordinates of $$M$$ are :

A. $$\left( {1,\,\frac{5}{3},\,\frac{{\sqrt 2 }}{3}} \right)$$
B. $$\left( {1,\, - 3,\, - 2} \right)$$
C. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{5}{{3\sqrt 2 }},\,\frac{1}{3}} \right)$$
D. none of these  
Answer :   none of these
Solution :
$$\eqalign{ & P = \left( {0,\,2\cos \,{{45}^ \circ },\,2\sin \,{{45}^ \circ }} \right) = \left( {0,\,\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right). \cr & {\text{If }}M = \left( {\alpha ,\,\beta ,\,\gamma } \right){\text{ then}} \cr & 3\alpha + \beta - \sqrt 2 \gamma \, = 2\sqrt 2 {\text{ and }}\frac{{\alpha - 0}}{3} = \frac{{\beta - \frac{1}{{\sqrt 2 }}}}{1} = \frac{{\gamma - \frac{1}{{\sqrt 2 }}}}{{ - \sqrt 2 }} \cr & \therefore \frac{\alpha }{3} = \frac{{\beta - \frac{1}{{\sqrt 2 }}}}{1} = \frac{{\sqrt 2 \gamma - 1}}{{ - \sqrt 2 }} \cr & = \frac{{3\alpha + \beta - \frac{1}{{\sqrt 2 }} - \left( {\sqrt 2 \gamma - 1} \right)}}{{9 + 1 - \left( { - 2} \right)}} \cr & = \frac{{2\sqrt 2 - \frac{1}{{\sqrt 2 }} + 1}}{{12}} \cr & = \frac{{3 + \sqrt 2 }}{{12\sqrt 2 }} \cr & \therefore \,\,\alpha = \frac{{3 + \sqrt 2 }}{{4\sqrt 2 }}, \cr & \beta = \frac{1}{{\sqrt 2 }} + \frac{{3 + \sqrt 2 }}{{12\sqrt 2 }} = \frac{{15 + \sqrt 2 }}{{12\sqrt 2 }}, \cr & \gamma = \frac{1}{{\sqrt 2 }}\left\{ {1 - \frac{{6 + 2\sqrt 2 }}{{12\sqrt 2 }}} \right\} = \frac{{10\sqrt 2 - 6}}{{24}} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section