Question
One ticket is selected at random from $$100$$ tickets numbered $$00,\,01,\,02,\, ....,\,98,\,99.$$ If $${x_1}$$ and $${x_2}$$ denotes the sum and product of the digits on the tickets, then $$P\left( {{x_1} = \frac{9}{{{x_2}}} = 0} \right)$$ is equal to :
A.
$$\frac{2}{{19}}$$
B.
$$\frac{{19}}{{100}}$$
C.
$$\frac{1}{{50}}$$
D.
none of these
Answer :
$$\frac{2}{{19}}$$
Solution :
$$\eqalign{
& {\text{Let the number selected by }}xy{\text{. Then,}} \cr
& x + y = 9,\,0 \leqslant x,\,y \leqslant 9{\text{ and}} \cr
& xy = 0 \Rightarrow x = 0,\,y = 9 \cr
& {\text{or }}y = 0,\,x = 9 \cr
& P\left( {{x_1} = \frac{9}{{{x_2}}} = 0} \right) = \frac{{P\left( {{x_1} = 9 \cap {x_2} = 0} \right)}}{{P\left( {{x_2} = 0} \right)}} \cr
& {\text{Now, }}P\left( {{x_2} = 0} \right) = \frac{{19}}{{100}}{\text{ and}} \cr
& P\left( {{x_1} = 9 \cap {x_2} = 0} \right) = \frac{2}{{100}} \cr
& \Rightarrow P\left( {{x_1} = \frac{9}{{{x_2}}} = 0} \right) = \frac{{\frac{2}{{100}}}}{{\frac{{19}}{{100}}}} = \frac{2}{{19}} \cr} $$