Solution :
$$\eqalign{
& {R_1} + {R_2} = 1000 \cr
& \Rightarrow {R_2} = 1000 - {R_1} \cr} $$
On balancing condition
$${R_1}\left( {100 - l} \right) = \left( {1000 - {R_1}} \right)l\,......\left( {\text{i}} \right)$$

On Interchanging resistance balance point shifts left by $$10\,cm$$

On balancing condition
$$\eqalign{
& \left( {1000 - {R_1}} \right)\left( {110 - l} \right) = {R_1}\left( {l - 10} \right) \cr
& {\text{or,}}\,{R_1}\left( {l - 10} \right) = \left( {1000 - {R_1}} \right)\left( {110 - l} \right)\,......\left( {{\text{ii}}} \right) \cr} $$
Dividing eqn (i) by (ii)
$$\eqalign{
& \frac{{100 - l}}{{l - 10}} = \frac{l}{{110 - l}} \cr
& \Rightarrow \left( {100 - l} \right)\left( {110 - l} \right) = l\left( {l - 10} \right) \cr
& \Rightarrow 11000 - 100l - 110l + {l^2} = {l^2} - 10l \cr
& \Rightarrow 11000 = 200l \cr
& {\text{or,}}\,l = 55 \cr} $$
Putting the value of $$'l'$$ in eqn (i)
$$\eqalign{
& {R_1}\left( {100 - 55} \right) = \left( {1000 - {R_1}} \right)55 \cr
& \Rightarrow {R_1}\left( {45} \right) = \left( {1000 - {R_1}} \right)55 \cr
& \Rightarrow {R_1}\left( 9 \right) = \left( {1000 - {R_1}} \right)11 \cr
& \Rightarrow 20{R_1} = 11000 \cr
& \therefore {R_1} = 550K\Omega \cr} $$