Question

Observe that $${1^3} = 1,{2^3} = 3 + 5,{3^3} = 7 + 9 + 11,{4^3} = 13 + 15 + 17 + 19.$$           Then $${n^3}$$ as a similar series is

A. $$\left[ {2\left\{ {\frac{{n\left( {n - 1} \right)}}{2} + 1} \right\} - 1} \right] + \left[ {2\left\{ {\frac{{\left( {n + 1} \right)n}}{2} + 1} \right\} + 1} \right] + ..... + \left[ {2\left\{ {\frac{{\left( {n + 1} \right)n}}{2} + 1} \right\} + 2n - 3} \right]$$
B. $$\left( {{n^2} + n + 1} \right) + \left( {{n^2} + n + 3} \right) + \left( {{n^2} + n + 5} \right) + ..... + \left( {{n^2} + 3n - 1} \right)$$
C. $$\left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + \left( {{n^2} - n + 5} \right) + ..... + \left( {{n^2} + n - 1} \right)$$  
D. none of these
Answer :   $$\left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + \left( {{n^2} - n + 5} \right) + ..... + \left( {{n^2} + n - 1} \right)$$
Solution :
$${1^3} = 1 \cdot \left( {1 - 1} \right) + 1,{2^3} = \left( {2 \cdot 1 + 1} \right) + 5,{3^3} = \left( {3 \cdot 2 + 1} \right) + 9 + 11,{4^3} = \left( {4 \cdot 3 + 1} \right) + 15 + 17 + 19,{\text{e}}{\text{.t}}{\text{.c}}{\text{.}}$$
$$\therefore \,\,{n^3} = \left\{ {n \cdot \left( {n - 1} \right) + 1} \right\} + .....,$$       next term being 2 more than the previous
$$\therefore \,\,{n^3} = \left( {{n^2} - n + 1} \right) + \left( {{n^2} - n + 3} \right) + .....$$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section