Question

Number of solutions of the equation, $${z^3} + \frac{{3{{\left| z \right|}^2}}}{z} = 0,$$   where $$z$$ is a complex number and $$\left| z \right| = \sqrt 3 $$   is

A. 2
B. 3
C. 6
D. 4  
Answer :   4
Solution :
$$\eqalign{ & {z^3} + \frac{{3{{\left| z \right|}^2}}}{z} = 0, \cr & \Rightarrow \,{z^3} + \frac{{3z.\bar z}}{z} = 0 \cr & \Rightarrow \,{z^3} + 3\bar z = 0 \cr & {\text{Let, }}\,z = r{e^{i\theta }} \cr & \Rightarrow \,{r^3}{e^{i3\theta }} + 3r{e^{ - i\theta }} = 0 \cr & \Rightarrow \,{e^{i4\theta }} = - 1\,\,\,\left[ {\because \,r = \sqrt 3 } \right] \cr & \Rightarrow \,\cos \,4\theta + i\,\sin \,4\theta = - 1 \cr & \Rightarrow \,\cos \,4\theta = - 1\,\,\,\,\,\,.....\left( {\text{i}} \right) \cr & {\text{Now, }}\,0 \leqslant \theta < 2\pi \cr & \Rightarrow \,0 \leqslant 4\theta < 8\pi \cr & \therefore \,\theta = \pi ,3\pi ,5\pi ,7\pi \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section