Question

Negation of "Paris in France and London is in England" is

A. Paris is in England and London is in France
B. Paris is not in France or London is not in England  
C. Paris is in England or London is in France
D. None of these
Answer :   Paris is not in France or London is not in England
Solution :
Let $$p :$$ Paris is in France, $$q :$$ London is in England
$$\therefore $$ we have $${p \wedge q}$$
Its negation is $$ \sim \left( {p \wedge q} \right) = \,\, \sim p \vee \sim q$$
i.e., Paris is not in France or London is not in England.

Releted MCQ Question on
Algebra >> Mathematical Reasoning

Releted Question 1

Let $$p$$ be the statement “$$x$$ is an irrational number”, $$q$$ be the statement “$$y$$ is a transcendental number”, and $$r$$ be the statement “$$x$$ is a rational number if $$f y$$  is a transcendental number”.
Statement - 1 : $$r$$ is equivalent to either $$q$$ or $$p$$
Statement - 2 : $$r$$ is equivalent to $$ \sim \left( {p \leftrightarrow \sim q} \right).$$

A. Statement - 1 is false, Statement - 2 is true
B. Statement - 1 is true, Statement - 2 is true ; Statement - 2 is a correct explanation for Statement - 1
C. Statement - 1 is true, Statement - 2 is true ; Statement - 2 is not a correct explanation for Statement - 1
D. none of these
Releted Question 2

The statement $$p \to \left( {q \to p} \right)$$   is equivalent to

A. $$p \to \left( {p \to q} \right)$$
B. $$p \to \left( {p \vee q} \right)$$
C. $$p \to \left( {p \wedge q} \right)$$
D. $$p \to \left( {p \leftrightarrow q} \right)$$
Releted Question 3

Statement - 1 : $$ \sim \left( {p \leftrightarrow \sim q} \right)$$   is equivalent to $${p \leftrightarrow q}.$$
Statement - 2 : $$ \sim \left( {p \leftrightarrow \sim q} \right)$$   is a tautology

A. Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B. Statement - 1 is true, Statement - 2 is false.
C. Statement - 1 is false, Statement - 2 is true.
D. Statement - 1 is true, Statement - 2 is true, Statement - 2 is a correct explanation for statement - 1
Releted Question 4

Consider the following statements
$$P$$ : Suman is brilliant
$$Q$$ : Suman is rich
$$R$$ : Suman is honest
The negation of the statement “Suman is brilliant and dishonest if and only if Suman is rich” can be expressed as

A. $$ \sim \left( {Q \leftrightarrow \left( {P \wedge \sim R} \right)} \right)$$
B. $$ \sim Q \leftrightarrow \sim P \wedge R$$
C. $$ \sim \left( {P \wedge \sim R} \right) \leftrightarrow Q$$
D. $$ \sim P \wedge \left( {Q \leftrightarrow \sim R} \right)$$

Practice More Releted MCQ Question on
Mathematical Reasoning


Practice More MCQ Question on Maths Section