Question

$$\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\left( {n + 1} \right)\left( {n + 2} \right).....3n}}{{{n^{2n}}}}} \right)^{\frac{1}{n}}}$$     is equal to:

A. $${\frac{{9}}{{{e^2}}}}$$
B. $$3\,\log \,3 - 2$$
C. $${\frac{{18}}{{{e^4}}}}$$
D. $${\frac{{27}}{{{e^2}}}}$$  
Answer :   $${\frac{{27}}{{{e^2}}}}$$
Solution :
$$\eqalign{ & y = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{\left( {n + 1} \right)\left( {n + 2} \right).....3n}}{{{n^{2n}}}}} \right)^{\frac{1}{n}}} \cr & \ln \,y = \mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\ln \left( {1 + \frac{1}{n}} \right)\left( {1 + \frac{2}{n}} \right)...\left( {1 + \frac{{2n}}{n}} \right) \cr & \ln \,y = \mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\left[ {\ln \left( {1 + \frac{1}{n}} \right) + \ln \left( {1 + \frac{2}{n}} \right) + ..... + \ln \left( {1 + \frac{{2n}}{n}} \right)} \right] \cr & = \mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\ln \left( {1 + \frac{r}{n}} \right)} \cr & = \int_0^2 {\ln } \left( {1 + x} \right)dx \cr & {\text{Let }}1 + x = t\,\,\, \Rightarrow dx = dt \cr & {\text{when }}x = 0,\,\,t = 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 2,\,\,\,t = 3 \cr & \ln \,y = \int_1^3 {\ln } \,t\,d\,t = \left[ {t\,\ln \,t - t} \right]_1^3 = \ln \left( {\frac{{{3^3}}}{{{e^2}}}} \right) = \ln \left( {\frac{{27}}{{{e^2}}}} \right) \cr & \Rightarrow y = \left( {\frac{{27}}{{{e^2}}}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section