Question

$$\mathop {\lim }\limits_{n \to \infty } \left[ {\frac{1}{{{n^2}}}{{\sec }^2}\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}}{{\sec }^2}\frac{4}{{{n^2}}} + ..... + \frac{1}{n}{{\sec }^2}1} \right]$$           equals-

A. $$\frac{1}{2}\sec \,1$$
B. $$\frac{1}{2}{\text{cosec}}\,1$$
C. $$\tan 1$$
D. $$\frac{1}{2}\tan 1$$  
Answer :   $$\frac{1}{2}\tan 1$$
Solution :
$$\eqalign{ & \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{1}{{{n^2}}}{{\sec }^2}\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}}{{\sec }^2}\frac{4}{{{n^2}}} + ..... + \frac{1}{n}{{\sec }^2}1} \right]{\text{is equal to}} \cr & \mathop {\lim }\limits_{n \to \infty } \frac{r}{{{n^2}}}{\sec ^2}\frac{{{r^2}}}{{{n^2}}} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{n}.\frac{r}{n}{\sec ^2}\frac{{{r^2}}}{{{n^2}}} \cr & \Rightarrow {\text{Given limit is equal to value of integral}} \cr & \int_0^1 {x\,{{\sec }^2}{x^2}dx = \frac{1}{2} \times } \int_0^1 {2x\,{{\sec }^2}{x^2}dx} \cr & {\text{Put }}{x^2} = t, \cr & {\text{The integral becomes}} = \frac{1}{2}\int_0^1 {{{\sec }^2}t\,dt = \frac{1}{2}\left( {\tan \,t} \right)_0^1 = \frac{1}{2}\tan \,1} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section