51. If in a $$\Delta \,ABC,$$  the altitudes from the vertices $$A, B, C$$  on opposite sides are in H.P, then $$\sin A, \sin B, \sin C$$    are in

A G.P.
B A.P.
C A.P. - G.P.
D H.P.
Answer :   A.P.
Discuss Question

52. In a $$\vartriangle ABC,\frac{{c + b}}{{c - b}} \cdot \tan \frac{A}{2}$$     is equal to

A $$\tan \left( {\frac{A}{2} + B} \right)$$
B $$\cot \left( {\frac{A}{2} + B} \right)$$
C $$\tan \left( {A + \frac{B}{2}} \right)$$
D None of these
Answer :   $$\tan \left( {\frac{A}{2} + B} \right)$$
Discuss Question

53. From a point a metre above a lake the angle of elevation of a cloud is $$\alpha $$ and the angle of depression of its reflection is $$\beta .$$ The height of the cloud is

A $$\frac{{a\sin \left( {\alpha + \beta } \right)}}{{\sin \left( {\alpha - \beta } \right)}}{\text{metre}}$$
B $$\frac{{a\sin \left( {\alpha + \beta } \right)}}{{\sin \left( {\beta - \alpha } \right)}}{\text{metre}}$$
C $$\frac{{a\sin \left( {\alpha - \beta } \right)}}{{\sin \left( {\alpha + \beta } \right)}}{\text{metre}}$$
D None of these
Answer :   $$\frac{{a\sin \left( {\alpha + \beta } \right)}}{{\sin \left( {\beta - \alpha } \right)}}{\text{metre}}$$
Discuss Question

54. In a $$\vartriangle ABC,a = 1$$   and the perimeter is six times the AM of the sines of the angles. The measure of $$\angle A$$ is

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{6}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{6}$$
Discuss Question

55. If in a $$\vartriangle ABC,{a^2} + {b^2} + {c^2} = 8{R^2},$$      where $$R =$$  circumradius, then the triangle is

A equilateral
B isosceles
C right angled
D None of these
Answer :   right angled
Discuss Question

56. If in an obtuse-angled triangle the obtuse angle is $$\frac{{3\pi }}{4}$$ and the other two angles are equal to two values of $$\theta $$ satisfying $$a\tan \theta + b\sec \theta = c,$$    where $$\left| b \right| \leqslant \sqrt {{a^2} + {c^2}} ,\,$$   then $${{a^2} - {c^2}}$$  is equal to

A $$ac$$
B $$2ac$$
C $$\frac{a}{c}$$
D None of these
Answer :   $$2ac$$
Discuss Question

57. If $$A + B + C = \pi ,$$    then $$\cos 2A + \cos 2B + \cos 2C + 4\sin A\sin B\sin C$$         is equal to :

A 0
B 1
C 2
D 3
Answer :   1
Discuss Question

58. A tower standing at right angles to the ground subtends an $${\sin ^{ - 1}}\frac{1}{3}$$  and $${\sin ^{ - 1}}\frac{1}{{\sqrt 5 }}$$  at two points $$A$$ and $$B$$ situated in a line through the foot of the tower and on the opposite sides. If $$AB = 50$$   units, then the height of the tower is :

A $$50$$
B $$25\sqrt 2 $$
C $$50\left( {\sqrt 6 - 2} \right)$$
D $$25\left( {\sqrt 2 - 1} \right)$$
Answer :   $$25\left( {\sqrt 2 - 1} \right)$$
Discuss Question

59. A $$\vartriangle ABC$$   is right angled at $$B.$$ Then the diameter of the incircle of the triangle is

A $$2\left( {c + a - b} \right)$$
B $$c + a - 2b$$
C $$c + a - b$$
D None of these
Answer :   $$c + a - b$$
Discuss Question

60. If the area of a $$\vartriangle ABC$$  be $$\lambda $$ then $${a^2}\sin 2B + {b^2}\sin 2A$$     is equal to

A $$2\lambda $$
B $$\lambda $$
C $$4\lambda $$
D None of these
Answer :   $$4\lambda $$
Discuss Question


Practice More MCQ Question on Maths Section