31. Two sides of a triangle are $$2\sqrt 2 \,cm$$  and $$2\sqrt 3 \,cm$$  and the angle opposite to the shorter side of the two is $$\frac{\pi }{4}.$$ The largest possible length of the third side is

A $$\sqrt 2 \left( {\sqrt 3 + 1} \right)\,cm$$
B $$\left( {6 + \sqrt 2 } \right)\,cm$$
C $$\left( {\sqrt 6 - \sqrt 2 } \right)\,cm$$
D None of these
Answer :   $$\sqrt 2 \left( {\sqrt 3 + 1} \right)\,cm$$
Discuss Question

32. If the angles of a triangle are $${30^ \circ }$$ and $${45^ \circ }$$ and the included side is $$\left( {\sqrt 3 + 1} \right),$$   then what is the area of the tringle ?

A $$\frac{{\sqrt 3 + 1}}{2}$$
B $${2\left( {\sqrt 3 + 1} \right)}$$
C $$\frac{{\sqrt 3 + 1}}{3}$$
D $$\frac{{\sqrt 3 - 1}}{2}$$
Answer :   $$\frac{{\sqrt 3 + 1}}{2}$$
Discuss Question

33. A moving boat is observed from the top of a cliff of $$150\,m$$  height. The angle of depression of the boat changes from $${{{60}^ \circ }}$$ to $${{{45}^ \circ }}$$ in 2 minutes. What is the speed of the boat in metres per hour ?

A $$\frac{{4500}}{{\sqrt 3 }}$$
B $$\frac{{4500\left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 }}$$
C $${4500\sqrt 3 }$$
D $$\frac{{4500\left( {\sqrt 3 + 1} \right)}}{{\sqrt 3 }}$$
Answer :   $$\frac{{4500\left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 }}$$
Discuss Question

34. $$O$$ is the circumcentre of the triangle $$ABC$$  and $$R_1, R_2, R_3$$   are the radii of the circumcircles of the triangles $$OBA, OCA$$   and $$OAB$$  respectively, then $$\frac{a}{{{R_1}}} + \frac{b}{{{R_2}}} + \frac{c}{{{R_3}}}$$    is equal to

A $$\frac{{abc}}{R}$$
B $$\frac{{abc}}{R^3}$$
C $$\frac{{abc}}{R^4}$$
D None
Answer :   $$\frac{{abc}}{R^3}$$
Discuss Question

35. If in a $$\vartriangle ABC,\frac{a}{{\cos A}} = \frac{b}{{\cos B}},$$     then

A $$2\sin A\sin B\sin C = 1$$
B $${\sin ^2}A + {\sin ^2}B = {\sin ^2}C$$
C $$2\sin A\cos B = \sin C$$
D None of these
Answer :   $$2\sin A\cos B = \sin C$$
Discuss Question

36. A pole stands vertically inside a triangular park $$\Delta ABC.$$   If the angle of elevation of the top of the pole from each corner of the park is same, then in $$\Delta ABC$$   the foot of the pole is at the

A centroid
B circumcentre
C incentre
D orthocentre
Answer :   circumcentre
Discuss Question

37. Let $$d_1, d_2$$  and $$d_3$$ be the lengths of perpendiculars from circumcentre of $$\Delta \,ABC$$   on the sides $$BC, AC$$   and $$AB,$$  respectively. If $$ \lambda \left( {\frac{a}{{{d_1}}} + \frac{b}{{{d_2}}} + \frac{c}{{{d_3}}}} \right) = \frac{{abc}}{{{d_1}{d_2}{d_3}}}\,$$      then $$\lambda $$ equals

A 1
B 2
C 3
D 4
Answer :   4
Discuss Question

38. In a $$\vartriangle ABC,$$  the angles $$A$$ and $$B$$ are two values of $$\theta $$ satisfying $$\sqrt 3 \cos \theta + \sin \theta = k,\left| k \right| < 2.$$      The triangle

A is acute angled
B is right angled
C is obtuse angled
D has one angle $$ = \frac{\pi }{3}$$
Answer :   is obtuse angled
Discuss Question

39. In a $$\Delta \,ABC;$$   if $$2\Delta = {a^2} - {\left( {b - c} \right)^2}$$    then value of $$\tan A =$$

A $$ - \frac{4}{3}$$
B $$ \frac{4}{3}$$
C $$ \frac{8}{15}$$
D $$ \frac{4}{15}$$
Answer :   $$ \frac{4}{3}$$
Discuss Question

40. The sides of a triangle are in the ratio $$1:\sqrt 3 :2,$$   then the angles of the triangle are in the ratio

A 1 : 3 : 5
B 2 : 3 : 4
C 3 : 2 : 1
D 1 : 2 : 3
Answer :   1 : 2 : 3
Discuss Question


Practice More MCQ Question on Maths Section