31.
Two sides of a triangle are $$2\sqrt 2 \,cm$$ and $$2\sqrt 3 \,cm$$ and the angle opposite to the shorter side of the two is $$\frac{\pi }{4}.$$ The largest possible length of the third side is
32.
If the angles of a triangle are $${30^ \circ }$$ and $${45^ \circ }$$ and the included side is $$\left( {\sqrt 3 + 1} \right),$$ then what is the area of the tringle ?
33.
A moving boat is observed from the top of a cliff of $$150\,m$$ height. The angle of depression of the boat changes from $${{{60}^ \circ }}$$ to $${{{45}^ \circ }}$$ in 2 minutes. What is the speed of the boat in metres per hour ?
A
$$\frac{{4500}}{{\sqrt 3 }}$$
B
$$\frac{{4500\left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 }}$$
C
$${4500\sqrt 3 }$$
D
$$\frac{{4500\left( {\sqrt 3 + 1} \right)}}{{\sqrt 3 }}$$
34.
$$O$$ is the circumcentre of the triangle $$ABC$$ and $$R_1, R_2, R_3$$ are the radii of the circumcircles of the triangles $$OBA, OCA$$ and $$OAB$$ respectively, then $$\frac{a}{{{R_1}}} + \frac{b}{{{R_2}}} + \frac{c}{{{R_3}}}$$ is equal to
$$\eqalign{
& \frac{{2R\sin A}}{{\cos A}} = \frac{{2R\sin B}}{{\cos B}}\,\,{\text{or, }}\sin A\cos B = \cos A\sin B \cr
& {\text{or, }}2\sin A\cos B = \cos A\sin B + \sin A\cos B = \sin \left( {A + B} \right) = \sin C. \cr} $$
36.
A pole stands vertically inside a triangular park $$\Delta ABC.$$ If the angle of elevation of the top of the pole from each corner of the park is same, then in $$\Delta ABC$$ the foot of the pole is at the
Let $$OP =$$ Pole,
$$\eqalign{
& \angle PAO = \angle PBO = \angle PCQ = \alpha \cr
& \frac{{OP}}{{OB}} = \tan \alpha \cr
& \Rightarrow \,\,OB = OP\cot \alpha \,\,\,\,\,\,.....\left( 1 \right) \cr} $$
$$\eqalign{
& {\text{Similarly}}\,\,OA = OP\cot \alpha \,\,\,\,\,.....\left( 2 \right) \cr
& {\text{Similarly}}\,\,OC = OP\cot \alpha \,\,\,\,\,.....\left( 3 \right) \cr} $$
From (1), (2) and (3), $$OA = OB = OC$$
⇒ $$O$$ is the point of circumcentre of the triangle $$ABC.$$
37.
Let $$d_1, d_2$$ and $$d_3$$ be the lengths of perpendiculars from circumcentre of $$\Delta \,ABC$$ on the sides $$BC, AC$$ and $$AB,$$ respectively. If $$ \lambda \left( {\frac{a}{{{d_1}}} + \frac{b}{{{d_2}}} + \frac{c}{{{d_3}}}} \right) = \frac{{abc}}{{{d_1}{d_2}{d_3}}}\,$$ then $$\lambda $$ equals
$$\eqalign{
& {\text{We have, }}\,\tan A = \frac{a}{{2{d_1}}}; \cr
& {d_1} = R\cos A\,{\text{ etc}}{\text{.}} \cr} $$
$$\eqalign{
& {\text{Similarly, }}\,\tan B = \frac{b}{{2{d_2}}} \cr
& {\text{and }}\,\tan C = \frac{C}{{2{d_3}}} \cr
& {\text{In }}\,\Delta \,ABC,\tan A + \tan B + \tan C \cr
& = \tan A \cdot \tan B \cdot \tan C \cr
& \Rightarrow \frac{a}{{2{d_1}}} + \frac{b}{{2{d_2}}} + \frac{c}{{2{d_3}}} = \frac{{abc}}{{8{d_1}{d_2}{d_3}}} \cr
& \therefore 4\left( {\frac{a}{{{d_1}}} + \frac{b}{{{d_2}}} + \frac{c}{{{d_3}}}} \right) = \frac{{abc}}{{{d_1}{d_2}{d_3}}} \cr
& \Rightarrow \lambda = 4 \cr} $$
38.
In a $$\vartriangle ABC,$$ the angles $$A$$ and $$B$$ are two values of $$\theta $$ satisfying $$\sqrt 3 \cos \theta + \sin \theta = k,\left| k \right| < 2.$$ The triangle