21. If for a $$\vartriangle ABC,\cot A \cdot \cot B \cdot \cot C > 0$$       then the triangle is

A right angled
B acute angled
C obtuse angled
D all these options are possible
Answer :   acute angled
Discuss Question

22. For a regular polygon, let $$r$$ and $$R$$ be the radii of the inscribed and the circumscribed circles. A false statement among the following is

A There is a regular polygon with $$\frac{r}{R} = \frac{1}{{\sqrt 2 }}$$
B There is a regular polygon with $$\frac{r}{R} = \frac{2}{3}$$
C There is a regular polygon with $$\frac{r}{R} = \frac{{\sqrt 3 }}{2}$$
D There is a regular polygon with $$\frac{r}{R} = \frac{1}{2}$$
Answer :   There is a regular polygon with $$\frac{r}{R} = \frac{2}{3}$$
Discuss Question

23. $$A$$ and $$B$$ are two points in the horizontal plane through $$O,$$ the foot of pillar $$OP$$  of height $$h$$ such that $$\angle \,AOB = \theta .$$   If the elevation of the top of the pillar from $$A$$ and $$B$$ are also equal to $$\theta ,$$ then $$AB$$  is equal to

A $$h \cot \theta$$
B $$h\cos \theta \sec \frac{\theta }{2}$$
C $$h\cot \theta \sin \frac{\theta }{2}$$
D $$h\cos \theta \,{\text {cosec}} \frac{\theta }{2}$$
Answer :   $$h\cos \theta \sec \frac{\theta }{2}$$
Discuss Question

24. If the $$\vartriangle ABC$$  is acute angled at $$C$$ then

A $$\cos 2A + \cos 2B - \cos 2C < 1$$
B $$\cos 2A + \cos 2B + \cos 2C > 1$$
C $${\cos ^2}A + {\cos ^2}B + {\cos ^2}C > 1$$
D None of these
Answer :   $$\cos 2A + \cos 2B - \cos 2C < 1$$
Discuss Question

25. The area of a cyclic quadrilateral $$ABCD$$   is $$\frac{{\left( {3\sqrt 3 } \right)}}{4}.$$  The radius of the circle circumscribing it is $$1.$$ If $$AB = 1,BD = \sqrt 3 $$    then $$BC \cdot CD$$   is equal to

A $$2$$
B $$3 - \frac{1}{{\sqrt 3 }}$$
C $$3\sqrt 3 + 1$$
D None of these
Answer :   $$2$$
Discuss Question

26. Let $$D$$ be the middle point of the side $$BC$$  of a triangle $$ABC.$$  If the triangle $$ADC$$  is equilateral, then $$a^2 : b^2 : c^2$$   is equal to

A $$1 : 4 : 3$$
B $$4 : 1 : 3$$
C $$4 : 3 : 1$$
D $$3 : 4 : 1$$
Answer :   $$4 : 1 : 3$$
Discuss Question

27. If in a $$\vartriangle ABC,3a = b + c$$     then $$\tan \frac{B}{2} \cdot \tan \frac{C}{2}$$   is equal to

A $$\tan \frac{A}{2}$$
B $$1$$
C $$2$$
D None of these
Answer :   None of these
Discuss Question

28. The top of a hill when observed from the top and bottom of a building of height $$h$$ is at angles of elevation $$p$$ and $$q$$ respectively. What is the height of the hill ?

A $$\frac{{h\cot q}}{{\cot q - \cot p}}$$
B $$\frac{{h\cot p}}{{\cot p - \cot q}}$$
C $$\frac{{2h\tan p}}{{\tan p - \tan q}}$$
D $$\frac{{2h\tan q}}{{\tan q - \tan p}}$$
Answer :   $$\frac{{h\cot p}}{{\cot p - \cot q}}$$
Discuss Question

29. The sides of a triangle are in A.P. and its area is $$\frac{3}{5} \times $$  (area of an equilateral triangle of the same perimeter). Then the ratio of the sides is

A 1 : 2 : 3
B 3 : 5 : 7
C 1 : 3 : 5
D None of these
Answer :   3 : 5 : 7
Discuss Question

30. In a triangle $$ABC,2{a^2} + 4{b^2} + {c^2} = 4ab + 2ac,$$       then $$\cos B$$  is equal to

A $$0$$
B $$\frac{1}{8}$$
C $$\frac{3}{8}$$
D $$\frac{7}{8}$$
Answer :   $$\frac{7}{8}$$
Discuss Question


Practice More MCQ Question on Maths Section