131. If the exradii of a triangle are in H.P. then the corresponding sides are in

A A.P.
B G.P.
C H.P.
D None of these
Answer :   A.P.
Discuss Question

132. If $$\alpha ,\beta ,\gamma $$  are the altitudes of a $$\vartriangle ABC$$  and $$2s$$ denotes its perimeter then $${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}}$$    is equal to

A $$\frac{\vartriangle }{s}$$
B $$\frac{s}{\vartriangle }$$
C $$s \cdot \vartriangle $$
D None of these
Answer :   $$\frac{s}{\vartriangle }$$
Discuss Question

133. The area of a circle is $${A_1}$$ and the area of a regular pentagon inscribed in the circle is $${A_2}.$$ Then $${A_1}:{A_2}$$  is

A $$\frac{\pi }{5}\cos \frac{\pi }{{10}}$$
B $$\frac{2\pi }{5}\sec \frac{\pi }{{10}}$$
C $$\frac{{2\pi }}{5}{\text{cosec}}\frac{\pi }{{10}}$$
D None of these
Answer :   $$\frac{2\pi }{5}\sec \frac{\pi }{{10}}$$
Discuss Question

134. A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is $${60^ \circ }.$$ when he retreats 20 feet from the bank, he finds the angle to be $${30^ \circ }.$$ The breadth of the river in feet is :

A $$15$$
B $$15\sqrt 3 $$
C $$10\sqrt 3 $$
D $$10$$
Answer :   $$10$$
Discuss Question

135. If the angles of elevation of the top of a tower from three collinear points $$A, B$$  and $$C,$$ on a line leading to the foot of the tower, are 30°, 45° and 60° respectively, then the ratio, $$AB$$  : $$BC,$$  is:

A $$1:\sqrt 3 $$
B 2 : 3
C $$\sqrt 3 :1$$
D $$\sqrt 3 :\sqrt 2 $$
Answer :   $$\sqrt 3 :1$$
Discuss Question

136. If the angles $$A, B$$  and $$C$$ of a triangle are in an arithmetic progression and if $$a, b$$  and $$c$$ denote the lengths of the sides opposite to $$A, B$$  and $$C$$ respectively, then the value of the expression $$\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$$     is

A $$\frac{1}{2}$$
B $$\frac{{\sqrt 3 }}{2}$$
C 1
D $$\sqrt 3 $$
Answer :   $$\sqrt 3 $$
Discuss Question

137. In triangle $$ABC$$  given $$9{a^2} + 9{b^2} - 17{c^2} = 0.$$     If $$\frac{{\cot A + \cot B}}{{\cot C}} = \frac{m}{n},$$     then the value of $$\left( {m + n} \right)$$   equals

A 13
B 5
C 7
D 9
Answer :   13
Discuss Question

138. From an aeroplane above a straight road the angle of depression of two positions at a distance $$20\,m$$  apart on the road are observed to be $${30^ \circ }$$ and $${45^ \circ }.$$ The height of the aeroplane above the ground is :

A $$10\sqrt 3 \,m$$
B $$10\left( {\sqrt 3 - 1} \right)m$$
C $$10\left( {\sqrt 3 + 1} \right)m$$
D $$20\,m$$
Answer :   $$10\left( {\sqrt 3 + 1} \right)m$$
Discuss Question

139. If in a $$\Delta \,ABC,\cos A\sin B = \sin C$$      then the value of $$\tan \frac{A}{2},$$  if $$3b - 5c = 0,$$   is

A $$0.5$$
B $$0.75$$
C $$0.33$$
D $$\frac{1}{{\sqrt 3 }}$$
Answer :   $$0.5$$
Discuss Question

140. In a $$\Delta \,ABC,\frac{{\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {c + a - b} \right)\left( {a + b - c} \right)}}{{4{b^2}{c^2}}}$$           equals

A $${\cos ^2}A$$
B $${\cos ^2}B$$
C $${\sin ^2}A$$
D $${\sin ^2}B$$
Answer :   $${\sin ^2}A$$
Discuss Question


Practice More MCQ Question on Maths Section