$$\eqalign{
& \frac{1}{{{r_1}}},\frac{1}{{{r_2}}},\frac{1}{{{r_3}}}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,\frac{{s - a}}{\vartriangle },\frac{{s - b}}{\vartriangle },\frac{{s - c}}{\vartriangle }\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,s - a,s - b,s - c\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\, - a, - b, - c\,{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$
132.
If $$\alpha ,\beta ,\gamma $$ are the altitudes of a $$\vartriangle ABC$$ and $$2s$$ denotes its perimeter then $${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}}$$ is equal to
134.
A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is $${60^ \circ }.$$ when he retreats 20 feet from the bank, he finds the angle to be $${30^ \circ }.$$ The breadth of the river in feet is :
Let $$h$$ be the height of tree $$PQ$$ and breadth of river $$PS$$ be $$x \,ft.$$
Angle of elevation subtended by a tree is $${60^ \circ }.$$
Also, when he retreats 20 feet, the angle becomes $${30^ \circ }.$$
$$\eqalign{
& {\text{Also, in }}\,\Delta \,PQS,\tan {60^ \circ } = \frac{h}{x} \cr
& \Rightarrow h = \sqrt 3 x \cr
& {\text{and in }}\,\Delta \,PQR,\tan {30^ \circ } = \frac{h}{{x + 20}} \cr
& \Rightarrow \frac{1}{{\sqrt 3 }} = \frac{h}{{x + 20}} \cr
& \Rightarrow x + 20 = \sqrt 3 h \cr
& \Rightarrow x + 20 = 3x\,\left( {{\text{By putting value of }}h} \right) \cr
& \Rightarrow 2x = 20 \cr
& \Rightarrow x = 10 \cr} $$
Hence breadth of river is $$10\,ft.$$
135.
If the angles of elevation of the top of a tower from three collinear points $$A, B$$ and $$C,$$ on a line leading to the foot of the tower, are 30°, 45° and 60° respectively, then the ratio, $$AB$$ : $$BC,$$ is:
$$\because \,\,PB\,{\text{bisects }}\angle APC,$$ therefore $$AB : BC = PA : PC$$
Also in $$\Delta \,APQ,\sin{30^ \circ } = \frac{h}{{PA}}$$
$$ \Rightarrow \,\,PA = 2h$$
and in $$\Delta \,CPQ,\sin {60^ \circ } = \frac{h}{{PC}}$$
$$ \Rightarrow \,\,PC = \frac{{2h}}{{\sqrt 3 }}$$
$$\therefore \,\,AB:BC = 2h:\frac{{2h}}{{\sqrt 3 }} = \sqrt 3 :1$$
136.
If the angles $$A, B$$ and $$C$$ of a triangle are in an arithmetic progression and if $$a, b$$ and $$c$$ denote the lengths of the sides opposite to $$A, B$$ and $$C$$ respectively, then the value of the expression $$\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$$ is
137.
In triangle $$ABC$$ given $$9{a^2} + 9{b^2} - 17{c^2} = 0.$$ If $$\frac{{\cot A + \cot B}}{{\cot C}} = \frac{m}{n},$$ then the value of $$\left( {m + n} \right)$$ equals
138.
From an aeroplane above a straight road the angle of depression of two positions at a distance $$20\,m$$ apart on the road are observed to be $${30^ \circ }$$ and $${45^ \circ }.$$ The height of the aeroplane above the ground is :
$$\eqalign{
& \cos A\sin B = \sin C \cr
& \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = 2\sin C \cr
& \Rightarrow \sin C = \sin \left( {B - A} \right) \cr
& \Rightarrow A + C = B\,\left( {\because A + B = \pi - C} \right) \cr
& \therefore B = \frac{\pi }{2} \cr
& {\text{Now, }}3b - 5c = 0 \cr
& \Rightarrow 3 - 5\sin C = 0 \cr
& \therefore \sin C = \frac{3}{5}\,{\text{and}}\,A = \frac{\pi }{2} - C \cr
& \Rightarrow \cos A = \sin C \cr
& \Rightarrow \frac{{1 - {{\tan }^2}\frac{A}{2}}}{{1 + {{\tan }^2}\frac{A}{2}}} = \frac{3}{5} \cr
& \therefore {\tan ^2}\frac{A}{2} = \frac{1}{4} \cr
& \Rightarrow \tan \frac{A}{2} = 0.5 \cr} $$
140.
In a $$\Delta \,ABC,\frac{{\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {c + a - b} \right)\left( {a + b - c} \right)}}{{4{b^2}{c^2}}}$$ equals