121. In a $$\vartriangle ABC,$$  the sides $$a, b$$  and $$c$$ are such that they are the roots of $${x^3} - 11{x^2} + 38x - 40 = 0.$$     Then $$\frac{{\cos A}}{a} + \frac{{\cos B}}{b} + \frac{{\cos C}}{c}$$     is equal to

A $$\frac{3}{4}$$
B $$1$$
C $$\frac{9}{16}$$
D None of these
Answer :   $$\frac{9}{16}$$
Discuss Question

122. $$PQR$$   is a triangular park with $$PQ = PR = 200 m.$$     A. T. V. tower stands at the mid - point of $$QR.$$  If the angles of elevation of the top of the tower at $$P, Q$$  and $$R$$ are respectively 45°, 30° and 30°, then the height of the tower (in $$m$$ ) is:

A 50
B $$100\sqrt 3 $$
C $$50\sqrt 2 $$
D 100
Answer :   100
Discuss Question

123. In a $$\vartriangle ABC,$$  the sides are in the ratio 4 : 5 : 6. The ratio of the circumradius and the inradius is

A 8 : 7
B 3 : 2
C 7 : 3
D 16 : 7
Answer :   16 : 7
Discuss Question

124. In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{2}$$
C $$\frac{2\pi }{3}$$
D $$\frac{5\pi }{6}$$
Answer :   $$\frac{2\pi }{3}$$
Discuss Question

125. Angles of a triangle are in the ratio $$4 : 1 : 1.$$  The ratio between its greatest side and perimeter is

A $$\frac{3}{{2 + \sqrt 3 }}$$
B $$\frac{1}{{2 + \sqrt 3 }}$$
C $$\frac{\sqrt 3}{{\sqrt 3 + 2 }}$$
D $$\frac{2}{{2 + \sqrt 3 }}$$
Answer :   $$\frac{\sqrt 3}{{\sqrt 3 + 2 }}$$
Discuss Question

126. A tower stands at the centre of a circular park. $$A$$ and $$B$$ are two points on the boundary of the park such that $$AB (= a)$$  subtends an angle of 60° at the foot of the tower, and the angle of elevation of the top of the tower from $$A$$ or $$B$$ is 30°. The height of the tower is

A $$\frac{a}{{\sqrt 3 }}$$
B $$a\sqrt 3 $$
C $$\frac{2a}{{\sqrt 3 }}$$
D $$2a\sqrt 3 $$
Answer :   $$\frac{a}{{\sqrt 3 }}$$
Discuss Question

127. If in a $$\vartriangle ABC,{a^2}{\cos ^2}A = {b^2} + {c^2}$$      then

A $$A < \frac{\pi }{4}$$
B $$\frac{\pi }{4} < A < \frac{\pi }{2}$$
C $$A > \frac{\pi }{2}$$
D $$A = \frac{\pi }{2}$$
Answer :   $$A > \frac{\pi }{2}$$
Discuss Question

128. In a $$\vartriangle ABC,$$  the inradius and three exradii are $$r,{r_1},{r_2}$$  and $${r_3}$$ respectively. In usual notations the value of $$r \cdot {r_1} \cdot {r_2} \cdot {r_3}$$   is equal to

A $$2\vartriangle $$
B $${\vartriangle ^2}$$
C $$\frac{{abc}}{{4R}}$$
D None of these
Answer :   $${\vartriangle ^2}$$
Discuss Question

129. In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A $$\frac{1}{{\sqrt 6 }}$$
B $${\frac{1}{3}}$$
C $$\frac{1}{{\sqrt 3 }}$$
D $$\sqrt {\frac{2}{3}} $$
Answer :   $$\frac{1}{{\sqrt 6 }}$$
Discuss Question

130. In a $$\vartriangle ABC,B = \frac{\pi }{8}$$    and $$C = \frac{{5\pi }}{8}.$$  The altitude from $$A$$ to the side $$BC$$  is

A $$\frac{a}{2}$$
B $$2a$$
C $$\frac{1}{2}\left( {b + c} \right)$$
D None of these
Answer :   $$\frac{a}{2}$$
Discuss Question


Practice More MCQ Question on Maths Section