111.
In a triangle, If $${r_1} = 2{r_2} = 3{r_3},\,$$ then $$\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$ is equal to
A
$$\frac{{75}}{{60}}$$
B
$$\frac{{155}}{{60}}$$
C
$$\frac{{176}}{{60}}$$
D
$$\frac{{191}}{{60}}$$
Answer :
$$\frac{{191}}{{60}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given that, }}{r_1} = 2{r_2} = 3{r_3} \cr
& \therefore \frac{\Delta }{{s - a}} = \frac{{2\Delta }}{{s - b}} = \frac{{3\Delta }}{{s - c}} = \frac{\Delta }{k} \cr
& {\text{Then, }}s - a = k,s - b = 2k,s - c = 3k \cr
& \Rightarrow 3s - \left( {a + b + c} \right) = 6k \cr
& \Rightarrow s = 6k \cr
& \therefore \frac{a}{5} = \frac{b}{4} = \frac{c}{3} = k \cr
& {\text{Now, }}\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = \frac{5}{4} + \frac{4}{3} + \frac{3}{5} \cr
& = \frac{{75 + 80 + 36}}{{60}} = \frac{{191}}{{60}} \cr} $$
112.
In a $$\vartriangle ABC,\angle A > \angle B.$$ If $$\sin A$$ and $$\sin B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0,0 < k < 1,$$ then $$\angle C$$ is
A
$$\frac{\pi }{3}$$
B
$$\frac{\pi }{2}$$
C
$$\frac{2\pi }{3}$$
D
$$\frac{5\pi }{6}$$
Answer :
$$\frac{2\pi }{3}$$
View Solution
Discuss Question
From the question, $$\sin 3A = k,\sin 3B = k$$
$$\eqalign{
& \Rightarrow \,\,\sin 3A = \sin 3B \cr
& \Rightarrow \,\,3A + 3B = \pi \cr
& \Rightarrow \,\,3\left( {\pi - C} \right) = \pi . \cr} $$
113.
If in a $$\vartriangle ABC,{\sin ^3}A + {\sin ^3}B + {\sin ^3}C = 3\sin A \cdot \sin B \cdot \sin C,$$ then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right|\] is
A
$$0$$
B
$${\left( {a + b + c} \right)^3}$$
C
$$\left( {a + b + c} \right)\left( {ab + bc + ca} \right)$$
D
None of these
Answer :
$$0$$
View Solution
Discuss Question
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = \left( {a + b + c} \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
b&c&a \\
c&a&b
\end{array}} \right|\]
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = \left( {a + b + c} \right)\left( {bc + ca + ab - {a^2} - {b^2} - {c^2}} \right)\]
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = - \left( {{a^3} + {b^3} + {c^3} - 3abc} \right)\]
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = - 8{R^3}\left( {{{\sin }^3}A + {{\sin }^3}B + {{\sin }^3}C - 3\sin A\sin B\sin C} \right)\]
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = 0,\,{\text{from the question}}{\text{.}}\]
114.
In a triangle $$ABC,c = 2,A = {45^ \circ },a = 2\sqrt 2 ,$$ than what is $$C$$ equal to ?
A
$${30^ \circ }$$
B
$${15^ \circ }$$
C
$${45^ \circ }$$
D
None of these
Answer :
$${30^ \circ }$$
View Solution
Discuss Question
According to sine rule,
$$\eqalign{
& \frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \cr
& \therefore \frac{a}{{\sin A}} = \frac{c}{{\sin C}} \cr
& \Rightarrow \sin C = \frac{{c \cdot \sin A}}{a} = \frac{{2 \cdot \sin {{45}^ \circ }}}{{2\sqrt 2 }} \cr
& = \frac{1}{{\sqrt 2 }} \cdot \frac{1}{{\sqrt 2 }} = \frac{1}{2} = \sin {30^ \circ } \cr
& \therefore C = {30^ \circ } \cr} $$
115.
In a $$\Delta \,ABC,\frac{{\sin A}}{{\sin C}} = \frac{{\sin \left( {A - B} \right)}}{{\sin \left( {B - C} \right)}},\,$$ then $${a^2},{b^2},{c^2}$$ are such that
A
$$b^2 = ac$$
B
$${b^2} = \frac{{{a^2}{c^2}}}{{{a^2} + {c^2}}}$$
C
they are in A.P.
D
$$b^2 = a^2 + c^2$$
Answer :
they are in A.P.
View Solution
Discuss Question
$$\eqalign{
& \frac{{\sin A}}{{\sin C}} = \frac{{\sin \left( {A - B} \right)}}{{\sin \left( {B - C} \right)}} \cr
& \Rightarrow \frac{{\sin \left( {B + C} \right)}}{{\sin \left( {A + B} \right)}} = \frac{{\sin \left( {A - B} \right)}}{{\sin \left( {B - C} \right)}} \cr
& \Rightarrow {\sin ^2}B - {\sin ^2}C = {\sin ^2}A - {\sin ^2}B \cr} $$
$$ \Rightarrow {\sin ^2}A,{\sin ^2}B,{\sin ^2}C$$ and hence $${a^2},{b^2},{c^2}$$ are in A.P.
116.
In a $$\vartriangle ABC,a = 5,b = 4$$ and $$\tan \frac{C}{2} = \sqrt {\frac{7}{9}} .$$ The side $$c$$ is
A
6
B
3
C
2
D
None of these
Answer :
6
View Solution
Discuss Question
$$\eqalign{
& {\tan ^2}\frac{C}{2} = \frac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = \frac{{\left( {9 + c - 10} \right)\left( {9 + c - 8} \right)}}{{\left( {9 + c} \right)\left( {9 - c} \right)}} = \frac{{{c^2} - 1}}{{81 - {c^2}}} \cr
& \therefore \,\,\frac{7}{9} = \frac{{{c^2} - 1}}{{81 - {c^2}}} \cr
& \Rightarrow \,\,c = 6. \cr} $$
117.
The equation $$a{x^2} + bx + c = 0,$$ where $$a, b, c$$ are the sides of a $$\vartriangle ABC,$$ and the equation $${x^2} + \sqrt 2 x + 1 = 0$$ have a common root. The measure of $$\angle C$$ is
A
$${90^ \circ }$$
B
$${45^ \circ }$$
C
$${60^ \circ }$$
D
None of these
Answer :
$${45^ \circ }$$
View Solution
Discuss Question
Clearly, the roots of $${x^2} + \sqrt 2 x + 1 = 0$$ are nonreal complex. So, one root common implies both roots are common.
So, $$\frac{a}{1} = \frac{b}{{\sqrt 2 }} = \frac{c}{1} = k.$$
$$\therefore \,\,\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{{k^2} + 2{k^2} - {k^2}}}{{2 \cdot k \cdot \sqrt 2 k}} = \frac{1}{{\sqrt 2 }}.$$
118.
A tower subtends an angle $$\alpha $$ at a point $$A$$ in the plane of its base and the angle of depression of the foot of the tower at a point $$l$$ meters just above $$A$$ is $$\beta .$$ The height of the tower is
A
$$l\tan \beta \cot \alpha $$
B
$$l\tan \alpha \cot \beta $$
C
$$l\tan \alpha \tan \beta $$
D
$$l\cot \alpha \cot \beta $$
Answer :
$$l\tan \alpha \cot \beta $$
View Solution
Discuss Question
From figure, we can deduce
$$H = l\tan \alpha \cot \beta .$$
119.
If the angles of triangle are in the ratio 4 : 1 : 1, then the ratio of the longest side to the perimeter is
A
$$\sqrt 3 : \left( {2 + \sqrt 3 } \right)$$
B
1 : 6
C
$$1:2 + \sqrt 3 $$
D
2 : 3
Answer :
$$\sqrt 3 : \left( {2 + \sqrt 3 } \right)$$
View Solution
Discuss Question
Given that $$A : B : C = 4 : 1 : 1$$
Let $$A = 4x, B = x, C = x$$
But $$A + B + C = 180°$$
⇒ $$4x + x + x = 180°$$
⇒ $$x = 30°$$
∴ $$A = 120°, B = 30°, C = 30°$$
By sine law, $$\frac{a}{{\sin {{120}^ \circ }}} = \frac{b}{{\sin {{30}^ \circ }}} = \frac{c}{{\sin {{30}^ \circ }}}$$
$$\eqalign{
& \Rightarrow \,\,\frac{a}{{\sqrt {\frac{3}{2}} }} = \frac{b}{{\frac{1}{2}}} = \frac{c}{{\frac{1}{2}}} \cr
& \Rightarrow \,\,a:b:c = \sqrt 3 :1:1 \cr} $$
∴ Ratio of longest side to the perimeter
$$\eqalign{
& = \sqrt 3 :1 + 1 + \sqrt 3 \cr
& = \sqrt 3 :2 + \sqrt 3 \cr} $$
120.
One angle of an isosceles $$\Delta $$ is 120° and radius of its incircle $$ = \sqrt 3 .$$ Then the area of the triangle in sq. units is
A
$$7 + 12\sqrt 3 $$
B
$$12 - 7\sqrt 3 $$
C
$$12 + 7\sqrt 3 $$
D
$$4\pi $$
Answer :
$$12 + 7\sqrt 3 $$
View Solution
Discuss Question
By Sine law in $$\Delta ABC$$
$$\eqalign{
& \frac{x}{{\sin {{30}^ \circ }}} = \frac{a}{{\sin {{120}^ \circ }}} \cr
& \Rightarrow \,\,a = x\sqrt 3 \cr} $$
$$\eqalign{
& \therefore \,\,\Delta = \frac{1}{2} \times x \times x\sin {120^ \circ } \cr
& = \frac{{\sqrt 3 }}{4}{x^2} \cr
& {\text{Also, }}\sqrt 3 = \frac{\Delta }{s} \cr
& \Rightarrow \,\,\frac{{\left( {2x + a} \right)}}{2}\sqrt 3 \cr
& = \frac{{\sqrt 3 }}{4}{x^2} \cr
& \Rightarrow \,\,x = 2\left( {2 + \sqrt 3 } \right) \cr
& \Rightarrow \,\,\Delta = \frac{{\sqrt 3 }}{4} \times 4\left( {4 + 3 + 4\sqrt 3 } \right) \cr
& \Rightarrow \,\,\Delta = 7\sqrt 3 + 12\,\,{\text{sq}}{\text{. units}}{\text{.}} \cr} $$