101. If in a $$\vartriangle ABC,$$  the values of $$\cot A,\cot B,\cot C$$    are in A.P., then

A $$a, b, c$$  are in A.P.
B $${a^2},{b^2},{c^2}$$  are in A.P.
C $$\cos A,\cos B,\cos C$$    are in A.P.
D None of these
Answer :   $${a^2},{b^2},{c^2}$$  are in A.P.
Discuss Question

102. If $$A + B + C = \pi $$    then $$\sum {\tan \frac{A}{2}\tan \frac{B}{2} = } $$

A $$1$$
B $$ - 1$$
C $$2$$
D None of these
Answer :   $$1$$
Discuss Question

103. A vertical pole consists of two parts, the lower part being one third of the whole. At a point in the horizontal plane through the base of the pole and distance 20 meters from it, the upper part of the pole subtends an angle whose tangent is $$\frac{1}{2}.$$ The possible heights of the pole are

A $$20\,m{\text{ and }}20\sqrt 3 \,m$$
B $$20\,m{\text{ and }}60 \,m$$
C $$16\,m{\text{ and }}48 \,m$$
D None of these
Answer :   $$20\,m{\text{ and }}60 \,m$$
Discuss Question

104. Two angles of a triangle are $$\frac{\pi }{6}$$ and $$\frac{\pi }{4},$$ and the length of the included side is $$\left( {\sqrt 3 + 1} \right)\,cm.$$   The area of the triangle is

A $$\frac{{\sqrt 3 - 1}}{2}\,{cm^2}$$
B $$\frac{{\sqrt 3}}{2}\,{cm^2}$$
C $$\frac{{\sqrt 3 + 1}}{2}\,{cm^2}$$
D None of these
Answer :   $$\frac{{\sqrt 3 + 1}}{2}\,{cm^2}$$
Discuss Question

105. In a $$\vartriangle ABC,\tan A \cdot \tan B \cdot \tan C = 9.$$       For such triangles, if $${\tan ^2}A + {\tan ^2}B + {\tan ^2}C = k$$      then

A $$9 \cdot \root 3 \of 3 < k < 27$$
B $$k \leqslant 27$$
C $$k < 9 \cdot \root 3 \of 3 $$
D $$k < 27$$
Answer :   $$k \leqslant 27$$
Discuss Question

106. If $$x, y$$  and $$z$$ are perpendiculars drawn on $$a, b$$  and $$c,$$ respectively, then the value of $$\frac{{bx}}{c} + \frac{{cy}}{a} + \frac{{az}}{b}$$    will be

A $$\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}$$
B $$\frac{{{a^2} + {b^2} + {c^2}}}{{R}}$$
C $$\frac{{{a^2} + {b^2} + {c^2}}}{{4R}}$$
D $$\frac{{2\left( {{a^2} + {b^2} + {c^2}} \right)}}{R}$$
Answer :   $$\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}$$
Discuss Question

107. A pole stands vertically inside a triangular park $$ABC.$$  If the angle of elevation of the top of the pole from each corner of the park is same, then the foot of the pole is at the

A centroid
B circumcentre
C incentre
D orthocentre
Answer :   centroid
Discuss Question

108. If $$k$$ be the perimeter of the $$\vartriangle ABC\,$$  then $$b\,{\cos ^2}\frac{C}{2} + c\,{\cos ^2}\frac{B}{2}$$    is equal to

A $$k$$
B $$2k$$
C $$\frac{k}{2}$$
D None of these
Answer :   $$\frac{k}{2}$$
Discuss Question

109. The angles of elevation of the top of a tower standing on a horizontal plane from two points on a line passing through the foot of the tower at distances $$49\,m$$  and $$36\,m$$  are $${43^ \circ }$$ and $${47^ \circ }$$ respectively. What is the height of the tower ?

A $$40\,m$$
B $$42\,m$$
C $$45\,m$$
D $$47\,m$$
Answer :   $$42\,m$$
Discuss Question

110. Consider the following statements :
1. There exists no triangle $$ABC$$  for which $$\sin A + \sin B = \sin C .$$
2. If the angle of a triangle are in the ratio $$1 : 2 : 3,$$   then its sides will be in the ratio $$1:\sqrt 3 :2.$$
Which of the above statements is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Both 1 and 2
Discuss Question


Practice More MCQ Question on Maths Section