31. A line $$PQ$$  meets the parabola $${y^2} = 4ax$$   in $$R$$ such that $$PQ$$  is bisected at $$R$$. If the coordinates of $$P$$ are $$\left( {{x_1},\,{y_1}} \right)$$  then the locus of $$Q$$ is the parabola :

A $${\left( {y + {y_1}} \right)^2} = 8a\left( {x + {x_1}} \right)$$
B $${\left( {y - {y_1}} \right)^2} = 8a\left( {x + {x_1}} \right)$$
C $${\left( {y + {y_1}} \right)^2} = 8a\left( {x - {x_1}} \right)$$
D None of these
Answer :   $${\left( {y + {y_1}} \right)^2} = 8a\left( {x + {x_1}} \right)$$
Discuss Question

32. The normal at the point $$\left( {bt_1^2,\,2b{t_1}} \right)$$   on a parabola meets the parabola again in the point $$\left( {bt_2^2,\,2b{t_2}} \right),$$   then :

A $${t_2} = {t_1} + \frac{2}{{{t_1}}}$$
B $${t_2} = - {t_1} - \frac{2}{{{t_1}}}$$
C $${t_2} = - {t_1} + \frac{2}{{{t_1}}}$$
D $${t_2} = {t_1} - \frac{2}{{{t_1}}}$$
Answer :   $${t_2} = - {t_1} - \frac{2}{{{t_1}}}$$
Discuss Question

33. A chord $$PP'$$  of a parabola cuts the axis of the parabola at $$O$$. The feet of the perpendiculars from $$P$$ and $$P'$$ on the axis are $$M$$ and $$M'$$ respectively. If $$V$$ is the vertex then $$VM,\,VO,\,VM'$$    are in :

A AP
B GP
C HP
D none of these
Answer :   GP
Discuss Question

34. The circle $${x^2} + {y^2} + 2\lambda x = 0,\,\lambda \, \in \,R,$$      touches the parabola $${y^2} = 4x$$  externally. Then :

A $$\lambda > 0$$
B $$\lambda < 0$$
C $$\lambda > 1$$
D none of these
Answer :   $$\lambda > 0$$
Discuss Question

35. The point $$\left( {a,\,2a} \right)$$  is an interior point of the region bounded by the parabola $${y^2} = 16x$$   and the double ordinate through the focus. Then $$a$$ belongs to the open interval :

A $$a < 4$$
B $$0 < a < 4$$
C $$0 < a < 2$$
D $$a > 4$$
Answer :   $$0 < a < 4$$
Discuss Question

36. The locus of a point from which tangents to a parabola are at right angles is a :

A straight line
B pair of straight lines
C circle
D parabola
Answer :   straight line
Discuss Question

37. $$'{t_1}'$$ and $$'{t_2}'$$ are two points on the parabola $${y^2} = 4x.$$  If the chord joining them is a normal to the parabola at $$'{t_1}'$$ then :

A $${t_1} + {t_2} = 0$$
B $${t_1}\left( {{t_1} + {t_2}} \right) = 1$$
C $${t_1}\left( {{t_1} + {t_2}} \right) + 2 = 0$$
D $${t_1}{t_2} + 1 = 0$$
Answer :   $${t_1}\left( {{t_1} + {t_2}} \right) + 2 = 0$$
Discuss Question

38. The length of a focal chord of the parabola $${y^2} = 4ax$$   at a distance $$b$$ from the vertex is $$c.$$ Then :

A $$2{a^2} = bc$$
B $${a^3} = {b^2}c$$
C $$ac = {b^2}$$
D $${b^2}c = 4{a^3}$$
Answer :   $${b^2}c = 4{a^3}$$
Discuss Question

39. The parabola $${y^2} = kx$$   makes an intercept of length 4 on the line $$x - 2y = 1.$$   Then $$k$$ is :

A $$\frac{{\sqrt {105} - 5}}{{10}}$$
B $$\frac{{5 - \sqrt {105} }}{{10}}$$
C $$\frac{{5 + \sqrt {105} }}{{10}}$$
D none of these
Answer :   $$\frac{{\sqrt {105} - 5}}{{10}}$$
Discuss Question

40. The tangents to the parabola $${y^2} = 4x$$  at the points $$\left( {1,\,2} \right)$$  and $$\left( {4,\,4} \right)$$  meet on the line :

A $$x = 3$$
B $$x + y = 4$$
C $$y = 3$$
D none of these
Answer :   $$y = 3$$
Discuss Question


Practice More MCQ Question on Maths Section