21. The tangents from the origin to the parabola $${y^2} + 4 = 4x$$   are inclined at :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{2}$$
Discuss Question

22. The locus of the middle points of chords of a parabola which subtend a right angle at the vertex of the parabola is :

A a circle
B an ellipse
C a parabola
D none of these
Answer :   a parabola
Discuss Question

23. If two tangents drawn from the point $$\left( {\alpha ,\,\beta } \right)$$  to the parabola $${y^2} = 4x$$  be such that the slope of one tangent is double of the other then :

A $$\beta = \frac{2}{9}{\alpha ^2}$$
B $$\alpha = \frac{2}{9}{\beta ^2}$$
C $$2\alpha = 9{\beta ^2}$$
D none of these
Answer :   $$\alpha = \frac{2}{9}{\beta ^2}$$
Discuss Question

24. The equation $$\lambda {x^2} + 4xy + {y^2} + \lambda x + 3y + 2 = 0$$       represents a parabola if $$\lambda $$ is :

A $$-4$$
B $$4$$
C $$0$$
D none of these
Answer :   $$4$$
Discuss Question

25. The length of the latus rectum of the parabola $$169\left\{ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 3} \right)}^2}} \right\} = {\left( {5x - 12y + 17} \right)^2}$$         is :

A $$\frac{{14}}{{13}}$$
B $$\frac{{28}}{{13}}$$
C $$\frac{{12}}{{13}}$$
D none of these
Answer :   $$\frac{{28}}{{13}}$$
Discuss Question

26. The equation of a tangent to the parabola $${y^2} = 8x$$  is $$y = x + 2.$$   The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is-

A $$\left( { 2,\,4} \right)$$
B $$\left( { - 2,\,0} \right)$$
C $$\left( { - 1,\,1} \right)$$
D $$\left( { 0,\,2} \right)$$
Answer :   $$\left( { - 2,\,0} \right)$$
Discuss Question

27. The normal at the point $$\left( {bt_1^2,\,2b{t_1}} \right)$$   on a parabola meets the parabola again in the point $$\left( {bt_2^2,\,2b{t_2}} \right)$$   then-

A $${t_2} = {t_1} + \frac{2}{{{t_1}}}$$
B $${t_2} = - {t_1} - \frac{2}{{{t_1}}}$$
C $${t_2} = - {t_1} + \frac{2}{{{t_1}}}$$
D $${t_2} = {t_1} - \frac{2}{{{t_1}}}$$
Answer :   $${t_2} = - {t_1} - \frac{2}{{{t_1}}}$$
Discuss Question

28. Given the two ends of the latus rectum, the maximum number of parabolas that can be drawn is :

A 1
B 2
C 0
D infinite
Answer :   2
Discuss Question

29. If the vertex $$ = \left( {2,\,0} \right)$$  and the extremities of the latus rectum are $$\left( {3,\,2} \right)$$  and $$\left( {3,\, - 2} \right)$$  then the equation of the parabola is :

A $${y^2} = 2x - 4$$
B $${x^2} = 4y - 8$$
C $${y^2} = 4x - 8$$
D none of these
Answer :   $${y^2} = 4x - 8$$
Discuss Question

30. $$P$$ is a point. Two tangents are drawn from it to the parabola $${y^2} = 4x$$  such that the slope of one tangent is three times the slope of the other. The locus of $$P$$ is :

A a straight line
B a circle
C a parabola
D an ellipse
Answer :   a parabola
Discuss Question


Practice More MCQ Question on Maths Section