Discuss Question
Let $$P\left( {at_1^2,\,2a{t_1}} \right)$$ and $$Q\left( {at_2^2,\,2a{t_2}} \right)$$ be two points on the parabola $${y^2} = 4ax.$$ The tangents at $$P$$ and $$Q$$ intersect at $$T\left[ {a{t_1}{t_2},\,a\left( {{t_1} + {t_2}} \right)} \right].$$
$$\eqalign{
& {\text{Now, }}SP = \sqrt {{{\left( {at_1^2 - a} \right)}^2} + 2{{\left( {a{t_1} - 0} \right)}^2}} = a\left( {t_1^2 + 1} \right)\,; \cr
& SQ = a\left( {t_2^2 + 1} \right) \cr
& {\text{and }}ST = \sqrt {{{\left( {a{t_1}{t_2} - a} \right)}^2} + {{\left[ {a\left( {{t_1} + {t_2}} \right) - 0} \right]}^2}} \cr
& \Rightarrow ST = a\sqrt {\left( {1 + t_1^2} \right)\left( {1 + t_2^2} \right)} \cr
& \Rightarrow S{T^2} = {a^2}\left( {1 + t_1^2} \right)\left( {1 + t_2^2} \right) \cr
& \Rightarrow S{T^2} = SP.SQ \cr} $$
Hence, $$SP,\,ST,\,SQ$$ are in G.P.