61.
A focus of an ellipse is at the origin. The directrix is the line $$x=4$$ and the eccentricity is $$\frac{1}{2}.$$ Then the length of the semi-major axis is :
Perpendicular distance of directrix from focus
$$\eqalign{
& = \frac{a}{e} - ae = 4 \cr
& \Rightarrow a\left( {2 - \frac{1}{2}} \right) = 4 \cr
& \Rightarrow a = \frac{8}{3} \cr} $$
$$\therefore $$ Semi major axis $$ = \frac{8}{3}$$
62.
If the tangents from the point $$\left( {\lambda ,\,3} \right)$$ to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$ are at right angles then $$\lambda $$ is :