51.
Which one of the following is correct ?
The eccentricity of the conic $$\frac{{{x^2}}}{{{a^2} + \lambda }} + \frac{{{y^2}}}{{{b^2} + \lambda }} = 1,\,\left( {\lambda \geqslant 0} \right)$$
Equation of the given conic is an equation of ellipse $$\frac{{{x^2}}}{{{a^2} + \lambda }} + \frac{{{y^2}}}{{{b^2} + \lambda }}\,\left( {x \geqslant 0} \right)$$
$$ \Rightarrow {A^2} = {a^2} + \lambda {\text{ and }}{B^2} = {b^2} + \lambda $$
$$\eqalign{
& {\text{Eccentricity, }}e = \sqrt {1 - \frac{{{B^2}}}{{{A^2}}}} \cr
& = \sqrt {1 - \frac{{{b^2} + \lambda }}{{{a^2} + \lambda }}} \cr
& = \sqrt {\frac{{{a^2} + \lambda - {b^2} - \lambda }}{{{a^2} + \lambda }}} \cr
& = \sqrt {\frac{{{a^2} - {b^2}}}{{{a^2} + \lambda }}} \cr} $$
$$\lambda $$ is in the denominator so, when $$\lambda $$ increases, the eccentricity decreases.
52.
$$P$$ is a variable point on the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 2$$ whose foci are $${F_1}$$ and $${F_2}.$$ The maximum area $$\left( {{\text{in uni}}{{\text{t}}^2}} \right)$$ of the $$\Delta PFF'$$ is :
53.
Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$ and $$C$$ be the circle $${x^2} + {y^2} = 9.$$ Let $$P = \left( {1,\,2} \right)$$ and $$Q = \left( {2,\,1} \right).$$ Which one of the following is correct ?
A
$$Q$$ lies inside $$C$$ but outside $$E$$
B
$$Q$$ lies outside both $$C$$ and $$E$$
C
$$P$$ lies inside both $$C$$ and $$E$$
D
$$P$$ lies inside $$C$$ but outside $$E$$
Answer :
$$P$$ lies inside $$C$$ but outside $$E$$
Given equation of ellipse $$E$$ is
$$\eqalign{
& \frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1 \cr
& \Rightarrow \frac{{4{x^2} + 9{y^2}}}{{36}} = 1 \cr
& \Rightarrow 4{x^2} + 9{y^2} = 36 \cr
& \Rightarrow 4{x^2} + 9{y^2} - 36 = 0......\left( 1 \right) \cr} $$
And $$C\,:$$ equation of circle is $${x^2} + {y^2} = 9$$
Which can be rewritten as $${x^2} + {y^2} - 9 = 0......\left( 2 \right)$$
For a point $$P = \left( {1,\,2} \right)$$ we have $$\eqalign{
& 4{\left( 1 \right)^2} + 9{\left( 2 \right)^2} - 36 = 40 - 36 > 0\,\,\,\,\left[ {{\text{from equation }}\left( 1 \right)} \right] \cr
& \,{\text{and }}\,{1^2} + {2^2} - 9 = 5 - 9 < 0\,\,\,\,\,\left[ {{\text{from equation }}\left( 2 \right)} \right] \cr} $$
$$\therefore $$ Point $$P$$ lies outside of $$E$$ and inside of $$C.$$
54.
The ellipse $${x^2} + 4{y^2} = 4$$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $$\left( {4,\,0} \right).$$ Then the equation of the ellipse is :
The given ellipse is $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$$
So $$A = \left( {2,\,0} \right)$$ and $$B = \left( {0,\,1} \right)$$
If $$PQRS$$ is the rectangle in which it is inscribed, then $$P = \left( {2,\,1} \right).$$
Let $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$
be the ellipse circumscribing the rectangle $$PQRS.$$
Then it passes through $$P\left( {2,\,1} \right)$$
$$\therefore \frac{4}{{{a^2}}} + \frac{1}{{{b^2}}} = 1.....(a)$$
Also, given that, it passes through $$\left( {4,\,0} \right)$$
$$\eqalign{
& \therefore \frac{{16}}{{{a^2}}} + 0 = 1\,\,\,\, \Rightarrow {a^2} = 16 \cr
& \Rightarrow {b^2} = \frac{4}{3}\left[ {{\text{substituting }}{a^2} = 16{\text{ in equation }}\left( a \right)} \right] \cr} $$
$$\therefore $$ The required ellipse is $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{\frac{4}{3}}} = 1{\text{ or }}{x^2} + 12{y^2} = 16$$
55.
If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$ then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-
56.
A point on the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$$ at a distance equal to the mean of the lengths of the semi-major axis and semi-minor axis from the centre is :
A
$$\left( {\frac{{2\sqrt {91} }}{7},\,\frac{{3\sqrt {105} }}{{14}}} \right)$$
B
$$\left( {\frac{{2\sqrt {91} }}{7},\, - \frac{{3\sqrt {105} }}{{14}}} \right)$$
C
$$\left( {\frac{{2\sqrt {105} }}{7},\,\frac{{3\sqrt {91} }}{{14}}} \right)$$
Any tangent to the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ at $$P\left( {a\,\cos \,\theta ,\,b\,\sin \,\theta } \right)$$ is $$\frac{{x\,\cos \,\theta }}{a} + \frac{{y\,\sin \,\theta }}{b} = 1$$
It meets co-ordinate axes at $$A\left( {a\,\sec \,\theta ,\,0} \right)$$ and $$B\left( {0,\,b\,{\text{cosec}}\,\theta } \right)$$
$$\therefore $$ Area of $$\Delta OAB = \frac{1}{2} \times a\,\sec \,\theta \times b\,{\text{cosec}}\,\theta $$
$$ \Rightarrow \Delta = \frac{{ab}}{{\sin \,2\theta }}$$
For $$\Delta $$ to be min, $${\sin \,2\theta }$$ should be max. and we know max. value of $$\sin \,2\theta = 1$$
$$\therefore {\Delta _{\max }} = ab\,\,{\text{sq}}{\text{. units}}$$
58.
The line passing through the extremity $$A$$ of the major axis and the extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M.$$ Then the area of the triangle with vertices $$A,\,M$$ and the origin $$O$$ is :