51. Which one of the following is correct ?
The eccentricity of the conic $$\frac{{{x^2}}}{{{a^2} + \lambda }} + \frac{{{y^2}}}{{{b^2} + \lambda }} = 1,\,\left( {\lambda \geqslant 0} \right)$$

A increases with increase in $$\lambda $$
B decreases with increase in $$\lambda $$
C does not change with $$\lambda $$
D None of the above
Answer :   decreases with increase in $$\lambda $$
Discuss Question

52. $$P$$ is a variable point on the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 2$$    whose foci are $${F_1}$$ and $${F_2}.$$ The maximum area $$\left( {{\text{in uni}}{{\text{t}}^2}} \right)$$   of the $$\Delta PFF'$$   is :

A $$2b\sqrt {{a^2} - {b^2}} $$
B $$\sqrt 2 b\sqrt {{a^2} - {b^2}} $$
C $$b\sqrt {{a^2} - {b^2}} $$
D $$2a\sqrt {{a^2} - {b^2}} $$
Answer :   $$2b\sqrt {{a^2} - {b^2}} $$
Discuss Question

53. Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P = \left( {1,\,2} \right)$$   and $$Q = \left( {2,\,1} \right).$$   Which one of the following is correct ?

A $$Q$$ lies inside $$C$$ but outside $$E$$
B $$Q$$ lies outside both $$C$$ and $$E$$
C $$P$$ lies inside both $$C$$ and $$E$$
D $$P$$ lies inside $$C$$ but outside $$E$$
Answer :   $$P$$ lies inside $$C$$ but outside $$E$$
Discuss Question

54. The ellipse $${x^2} + 4{y^2} = 4$$   is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $$\left( {4,\,0} \right).$$  Then the equation of the ellipse is :

A $${x^2} + 12{y^2} = 16$$
B $$4{x^2} + 48{y^2} = 48$$
C $$4{x^2} + 64{y^2} = 48$$
D $${x^2} + 16{y^2} = 16$$
Answer :   $${x^2} + 12{y^2} = 16$$
Discuss Question

55. If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$
Answer :   $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
Discuss Question

56. A point on the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$$   at a distance equal to the mean of the lengths of the semi-major axis and semi-minor axis from the centre is :

A $$\left( {\frac{{2\sqrt {91} }}{7},\,\frac{{3\sqrt {105} }}{{14}}} \right)$$
B $$\left( {\frac{{2\sqrt {91} }}{7},\, - \frac{{3\sqrt {105} }}{{14}}} \right)$$
C $$\left( {\frac{{2\sqrt {105} }}{7},\,\frac{{3\sqrt {91} }}{{14}}} \right)$$
D $$\left( { - \frac{{2\sqrt {105} }}{7}, - \,\frac{{3\sqrt {91} }}{{14}}} \right)$$
Answer :   $$\left( {\frac{{2\sqrt {91} }}{7},\,\frac{{3\sqrt {105} }}{{14}}} \right)$$
Discuss Question

57. The minimum area of triangle formed by the tangent to the $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$    & coordinate axes is-

A $$ab\,\,{\text{sq}}{\text{. units}}$$
B $$\frac{{{a^2} + {b^2}}}{2}\,\,{\text{sq}}{\text{. units}}$$
C $$\frac{{{{\left( {a + b} \right)}^2}}}{2}\,\,{\text{sq}}{\text{. units}}$$
D $$\frac{{{a^2} + ab + {b^2}}}{3}\,\,{\text{sq}}{\text{. units}}$$
Answer :   $$ab\,\,{\text{sq}}{\text{. units}}$$
Discuss Question

58. The line passing through the extremity $$A$$ of the major axis and the extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$   meets its auxiliary circle at the point $$M.$$ Then the area of the triangle with vertices $$A,\,M$$  and the origin $$O$$ is :

A $$\frac{{31}}{{10}}$$
B $$\frac{{29}}{{10}}$$
C $$\frac{{21}}{{10}}$$
D $$\frac{{27}}{{10}}$$
Answer :   $$\frac{{27}}{{10}}$$
Discuss Question

59. The value of $$c$$ for which the line $$y = 3x + c$$   touches the ellipse $$16{x^2} + {y^2} = 16$$    is :

A 5
B 1
C 4
D 3
Answer :   5
Discuss Question

60. If the ellipse $$9{x^2} + 16{y^2} = 144$$     intercepts the line $$3x + 4y = 12,$$    then what is the length of the chord so formed ?

A $$5$$ units
B $$6$$ units
C $$8$$ units
D $$10$$  units
Answer :   $$5$$ units
Discuss Question


Practice More MCQ Question on Maths Section