11. The set of real values of $$k$$ for which the equation $$\left( {k + 1} \right){x^2} + 2\left( {k - 1} \right)xy + {y^2} - x + 2y + 3 = 0$$          represents an ellipse is :

A $$\left( {0,\,3} \right)$$
B $$\left( { - \infty ,\,0} \right)$$
C $$\left( {3,\, + \infty } \right)$$
D $$\left( { - \infty ,\,\infty } \right)$$
Answer :   $$\left( {0,\,3} \right)$$
Discuss Question

12. Let $${S_1},\,{S_2}$$  be the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{8} = 1.$$   If $$A\left( {x + y} \right)$$  is any point on the ellipse, then the maximum area of the triangle $$A{S_1}{S_2}$$   (in square units) is :

A $$2\sqrt 2 $$
B $$2\sqrt 3 $$
C $$8$$
D $$4$$
Answer :   $$8$$
Discuss Question

13. The tangent to the ellipse $$16{x^2} + 9{y^2} = 144,$$    making equal intercepts on both the axes, is :

A $$y = x + 3$$
B $$y = x - 2$$
C $$x + y = 5$$
D $$y = - x + 4$$
Answer :   $$x + y = 5$$
Discuss Question

14. The equation of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having centre at $$\left( {0,\,3} \right)$$  is :

A $${x^2} + {y^2} - 6y - 7 = 0$$
B $${x^2} + {y^2} - 6y + 7 = 0$$
C $${x^2} + {y^2} - 6y - 5 = 0$$
D $${x^2} + {y^2} - 6y + 5 = 0$$
Answer :   $${x^2} + {y^2} - 6y - 7 = 0$$
Discuss Question

15. If the latus rectum of an ellipse is equal to one half its minor axis, what is the eccentricity of the ellipse ?

A $$\frac{1}{2}$$
B $$\frac{{\sqrt 3 }}{2}$$
C $$\frac{3}{4}$$
D $$\frac{{\sqrt {15} }}{4}$$
Answer :   $$\frac{{\sqrt 3 }}{2}$$
Discuss Question

16. The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$   meets its auxiliary circle at the point $$M.$$  Then the area of the triangle with vertices at $$A,\,M$$  and the origin $$O$$ is-

A $$\frac{{31}}{{10}}$$
B $$\frac{{29}}{{10}}$$
C $$\frac{{21}}{{10}}$$
D $$\frac{{27}}{{10}}$$
Answer :   $$\frac{{27}}{{10}}$$
Discuss Question

17. The centre of the conic section $$14{x^2} - 4xy + 11{y^2} - 44x - 58y + 71 = 0$$         is :

A $$\left( {2,\,3} \right)$$
B $$\left( {2,\, - 3} \right)$$
C $$\left( { - 2,\,3} \right)$$
D $$\left( { - 2,\, - 3} \right)$$
Answer :   $$\left( {2,\,3} \right)$$
Discuss Question

18. If $$P$$ and $$Q$$ are the ends of a pair of conjugate diameters and $$C$$ is the centre of the ellipse $$4{x^2} + 9{y^2} = 36$$    then the area of the $$\Delta CPQ$$   is :

A $$6\,{\text{uni}}{{\text{t}}^2}$$
B $$3\,{\text{uni}}{{\text{t}}^2}$$
C $$2\,{\text{uni}}{{\text{t}}^2}$$
D $$12\,{\text{uni}}{{\text{t}}^2}$$
Answer :   $$3\,{\text{uni}}{{\text{t}}^2}$$
Discuss Question

19. The latus rectum of the conic section $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$   whose eccentricity $$ = e,$$  is :

A $$\frac{{2{a^2}}}{b}$$
B $$\frac{{2b}}{{{a^2}}}$$
C $$2a\left( {1 - {e^2}} \right)$$
D $$2b\left( {1 - {e^2}} \right)$$
Answer :   $$2a\left( {1 - {e^2}} \right)$$
Discuss Question

20. The equation of the ellipse with its centre at $$\left( {1,\,2} \right),$$  focus at $$\left( {6,\,2} \right)$$  and passing through the point $$\left( {4,\,6} \right)$$  is $$\frac{{{{\left( {x - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{{b^2}}} = 1,$$     then :

A $${a^2} = 1,\,{b^2} = 25$$
B $${a^2} = 25,\,{b^2} = 20$$
C $${a^2} = 20,\,{b^2} = 25$$
D None of these
Answer :   None of these
Discuss Question


Practice More MCQ Question on Maths Section