$$y = mx + \sqrt {{a^2} + {a^2}{m^2}} $$ touches the circle $${x^2} + {y^2} = {a^2}.$$ Here $$a = 2.$$
12.
Lines are drawn through the point $$P\left( { - 2,\, - 3} \right)$$ to meet the circle $${x^2} + {y^2} - 2x - 10y + 1 = 0.$$ The length of the line segment $$PA,\,A$$ being the point on the circle where the line meets the circle at coincident points, is :
$$PA = $$ the length of the tangent from $$P$$ to the circle
$$= \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 3} \right)}^2} - 2\left( { - 2} \right) - 10\left( { - 3} \right) + 1} $$
13.
In the given figure, the equation of the larger circle is $${x^2} + {y^2} + 4y - 5 = 0$$ and the distance between centers is $$4.$$ Then the equation of smaller circle is
We have $${x^2} + {y^2} + 4y - 5 = 0.$$
Its centre is $${C_1}\left( {0,\, - 2} \right),\,{r_1} = \sqrt {4 + 5} = 3$$
Let $${C_2}\left( {h,\,k} \right)$$ be the centre of the smaller circle and its radius $${r_2}.$$ Then, $${C_1}{C_2} = 4.$$
$$\eqalign{
& \Rightarrow \sqrt {{h^2} + {{\left( {k + 2} \right)}^2}} = 3 + {r_2} = 4......\left( 1 \right) \cr
& \Rightarrow {r_2} = 1 \cr} $$
But $$k = {r_2} = 1$$ [it touches $$x$$-axis]
$$\therefore $$ From equation $$\left( 1 \right),$$ we get
$$\eqalign{
& 4 = \,\,\sqrt {{h^2} + {{\left( {1 + 2} \right)}^2}} \cr
& \Rightarrow 16 = {h^2} + 9 \cr
& \Rightarrow {h^2} = 7 \cr
& \Rightarrow h = \pm \sqrt 7 \cr} $$
Since $$h > 0\,\,\,\,\,\therefore h = \sqrt 7 $$
Hence, required circle is $${\left( {x - \sqrt 7 } \right)^2} + {\left( {y - 1} \right)^2} = 1$$
14.
If $$P$$ and $$Q$$ are the points of intersection of the circles $${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$$ and $${x^2} + {y^2} + 2x + 2y - {p^2} = 0$$ then there is a circle passing through $$P, \,Q$$ and $$\left( {1,\,1} \right)$$ for :
The given circles are
$$\eqalign{
& {S_1} \equiv {x^2} + {y^2} + 3x + 7y + 2p - 5 = 0.....(1) \cr
& {S_2} \equiv {x^2} + {y^2} + 2x + 2y - {p^2} = 0.....(2) \cr} $$
$$\therefore $$ Equation of common chord $$PQ$$ is $${S_1} - {S_2} = 0$$
$$ \Rightarrow L \equiv x + 5y + {p^2} + 2p - 5 = 0$$
$$ \Rightarrow $$ Equation of circle passing through $$P$$ and $$Q$$ is $${S_1} + \lambda \,{\text{L}} = 0$$
$$ \Rightarrow \left( {{x^2} + {y^2} + 3x + 7y + 2p - 5} \right) + \lambda \left( {x + 5y + {p^2} + 2p - 5} \right) = 0$$
As it passes through (1, 1), therefore
$$ \Rightarrow \left( {7 + 2p} \right) + \lambda \left( {2p + {p^2} + 1} \right) = 0$$
$$ \Rightarrow \lambda = - \frac{{2p + 7}}{{{{\left( {p + 1} \right)}^2}}},$$ which does not exist for $$p=-1$$
15.
Distances from the origin to the centers of the three circles $${x^2} + {y^2} - 2{\lambda _{\text{i}}}x = {c^2}$$ (where $$c$$ is constant and $${\text{i}} = 1,\,2,\,3$$ ) are in G.P. Then the lengths of tangents drawn from any point on the circle $${x^2} + {y^2} = {c^2}$$ to these circles are in :
Centers of the circle are $$\left( {{\lambda _{\text{1}}},\,0} \right),\,\left( {{\lambda _2},\,0} \right)$$ and $$\left( {{\lambda _3},\,0} \right)$$
$$\therefore $$ Given $$\lambda _2^2 = {\lambda _1}{\lambda _3}$$
Any point on $${x^2} + {y^2} = {c^2}$$ is $$\left( {c\,\cos \,\theta ,\,c\,\sin \,\theta } \right)$$
The length of tangents from this point to the given circles are :
$$t_1^2 = - 2{\lambda _1}c\,\cos \,\theta ,\,\,t_2^2 = - 2{\lambda _2}c\,\cos \,\theta ,\,\,t_3^2 = - 2{\lambda _3}c\,\cos \,\theta $$
Clearly, $${\left( {t_2^2} \right)^2} = t_1^2.t_3^2 \Rightarrow \left( {\because \,\lambda _2^2 = {\lambda _1}{\lambda _3}} \right)$$
$$\therefore \,t_1^2,\,t_2^2,\,t_3^2$$ are in G.P. hence $${t_1},\,{t_2},\,{t_3}$$ are also in G.P.
16.
A tangent to the circle $${x^2} + {y^2} = 1$$ through the point (0, 5) cuts the circle $${x^2} + {y^2} = 4$$ at $$A$$ and $$B.$$ The tangents to the circle $${x^2} + {y^2} = 4$$ at $$A$$ and $$B$$ meet at $$C.$$ The coordinates of $$C$$ are :
A
$$\left( {\frac{8}{5}\sqrt 6 ,\,\frac{4}{5}} \right)$$
B
$$\left( {\frac{8}{5}\sqrt 6 ,\, - \frac{4}{5}} \right)$$
C
$$\left( { - \frac{8}{5}\sqrt 6 ,\, - \frac{4}{5}} \right)$$
If $$C = \left( {\alpha ,\,\beta } \right),$$ the chord of contact of the tangents from it to the circle $${x^2} + {y^2} = 4,$$ i.e., $$\alpha x + \beta y = 4$$ passes through (0, 5). So, $$\beta = \frac{4}{5}.$$
Also $$\alpha x + \beta y = 4$$ touches the circle $${x^2} + {y^2} = 1.$$
Hence, $$\frac{4}{{\sqrt {{\alpha ^2} + {\beta ^2}} }} = 1$$
$$\eqalign{
& \therefore \,16 = {\alpha ^2} + {\left( {\frac{4}{5}} \right)^2}\,\,{\text{or }}{\alpha ^2} = 16 - \frac{{16}}{{25}} = \frac{{384}}{{25}} \cr
& \therefore \,\,\alpha = \pm \frac{{8\sqrt 6 }}{5} \cr} $$
17.
If $$OA$$ and $$OB$$ are the tangents from the origin to the circle $${x^2} + {y^2} + 2gx + 2fy + c = 0$$ and $$C$$ is the centre of the circle, the area of the quadrilateral $$OACB$$ is :
A
$$\frac{1}{2}\sqrt {c\left( {{g^2} + {f^2} - c} \right)} $$
B
$$\sqrt {c\left( {{g^2} + {f^2} - c} \right)} $$
Area of quadrilateral $$ = 2$$ [ area of $$\Delta OAC$$ ]
$$\eqalign{
& = 2.\frac{1}{2}OA.AC \cr
& = \sqrt {{S_1}} .\sqrt {{g^2} + {f^2} - c} \cr} $$
Point is $$\left( {0,\,0} \right) \Rightarrow {S_1} = c,$$
$$\therefore $$ Area $$ = \sqrt {c\left( {{g^2} + {f^2} - c} \right)} $$
18.
Four distinct points $$\left( {2k,\,3k} \right),\,\left( {1,\,0} \right),\,\left( {0,\,1} \right)$$ and $$\left( {0,\,0} \right)$$ lie on a circle for :
The equation of the circle through $$\left( {1,\,0} \right),\,\left( {0,\,1} \right)$$ and $$\left( {0,\,0} \right)$$ is $${x^2} + {y^2} - x - y = 0$$
It passes through $$\left( {2k,\,3k} \right)$$
$$\eqalign{
& {\text{So, }}4{k^2} + 9{k^2} - 2k - 3k = 0 \cr
& \Rightarrow 13{k^2} - 5k = 0 \cr
& \Rightarrow k\left( {13k - 5} \right) = 0 \cr
& \Rightarrow k = 0{\text{ or }}k = \frac{5}{{13}} \cr} $$
But $$k \ne 0$$ [$$\because $$ all the four points are distinct]
$$\therefore k = \frac{5}{{13}}$$
19.
If two distinct chords, drawn from the point $$\left( {p,\,q} \right)$$ on the circle $${x^2} + {y^2} = px + qy$$ (where $$pq \ne 0$$ ) are bisected by the $$x$$-axis, then-
The given equation of the circle is
$${x^2} + {y^2} - px - qy = 0,\,\,\,\,\,pq \ne 0$$
Let the chord drawn from $$\left( {p,\,q} \right)$$ is bisected by $$x$$-axis at point $$\left( {{x_1},\,0} \right).$$
Then equation of chord is
$$x\,{x_1} - \frac{p}{2}\left( {x + {x_1}} \right) - \frac{q}{2}\left( {y + 0} \right) = x_1^2 - p{x_1}$$ (using $$T = {S_1}$$ )
As it passes through $$\left( {p,\,q} \right)$$ therefore,
$$\eqalign{
& p{x_1} - \frac{p}{2}\left( {p + {x_1}} \right) - \frac{{{q^2}}}{2} = x_1^2 - p{x_1} \cr
& \Rightarrow x_1^2 - \frac{3}{2}p{x_1} + \frac{{{p^2}}}{2} + \frac{{{q^2}}}{2} \cr
& \Rightarrow 2\,x_1^2 - 3p{x_1} + {p^2} + {q^2} = 0 \cr} $$
As through $$\left( {p,\,q} \right)$$ two distinct chords can be drawn.
$$\therefore $$ Roots of above equation be real and distinct, i.e., $$D>0$$
$$\eqalign{
& \Rightarrow 9{p^2} - 4 \times 2\left( {{p^2} + {q^2}} \right) > 0 \cr
& \Rightarrow {p^2} > 8{q^2} \cr} $$
20.
Let $$A$$ be the centre of the circle $${x^2} + {y^2} - 2x - 4y - 20 = 0,$$ and $$B\left( {1,\,7} \right)$$ and $$D\left( {4,\, - 2} \right)$$ are points on the circle then, if tangents be drawn at $$B$$ and $$D,$$ which meet at $$C,$$ then area of quadrilateral $$ABCD$$ is :