We know that $$\left[ {\left( {A \cup B} \right) \cap C} \right]' = A' \cap B' \cup C'$$
122.
A survey shows that $$61\% ,\,46\% $$ and $$29\%$$ of the people watched "3 idiots", "Rajneeti" and "Avatar" respectively. $$25\%$$ people watched exactly two of the three movies and $$3\%$$ watched none. What percentage of people watched all the three movies ?
The given condition is as follows-
$$\eqalign{
& {\text{We know that}} \cr
& \left\{ {\left( {a + d + e + g} \right) + \left( {b + d + f + g} \right) + \left( {c + e + f + g} \right)} \right\} - \left( {d + e + f} \right) - 2g = a + b + c + d + e + f + g \cr
& {\text{or, }}61x + 46x + 29x - 25x - 2g = 97x \cr
& {\text{or, }}2g = 14x \cr
& {\text{or, }}g = 7 \cr} $$
123.
Let $$f\left( x \right) = - 1 + \left| {x - 1} \right|,\, - 1 \leqslant x \leqslant 3$$ and $$ \leqslant g\left( x \right) = 2 - \left| {x + 1} \right|,\, - 2 \leqslant x \leqslant 2,$$ then $$\left( {fog} \right)\left( x \right)$$ is equal to :
A
\[\left\{ \begin{array}{l}
x + 1\,\,\,\,\, - 2 \le x \le 0\\
x - 1\,\,\,\,\,\,\,\,\,\,0 < x \le 2
\end{array} \right.\]
B
\[\left\{ \begin{array}{l}
x - 1\,\,\,\,\, - 2 \le x \le 0\\
x + 1\,\,\,\,\,\,\,\,\,\,\,0 < x \le 2
\end{array} \right.\]
C
\[\left\{ \begin{array}{l}
- 1 - x\,\,\,\,\, - 2 \le x \le 0\\
\,\,\,x - 1\,\,\,\,\,\,\,\,\,\,\,\,0 < x \le 2
\end{array} \right.\]
\[\begin{array}{l}
\left( {fog} \right)\left( x \right) = \left\{ \begin{array}{l}
f\left( {x + 3} \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \le x + 3 \le 2\\
f\left( { - x + 1} \right),\,\,\,\, - 1 \le - x + 2 \le 2
\end{array} \right.\\
= \left\{ \begin{array}{l}
f\left( {x + 3} \right),\,\,\,\,\,\,\,\,\,\,\,\,1 \le x + 3 \le 2\\
f\left( { - x + 1} \right),\,\,\, - 1 \le - x + 1 \le 1\\
f\left( { - x + 1} \right),\,\,\,\,\,\,\,\,1 \le - x + 1 \le 2
\end{array} \right.\\
= \left\{ \begin{array}{l}
\,\,\,\,\,x + 1,\,\,\,\,\, - 2 \le x \le - 1\\
- x - 1,\,\,\,\,\, - 1 \le x \le 0\\
\,\,\,\,\,x - 1,\,\,\,\,\,\,\,\,\,\,\,0 \le x \le 2
\end{array} \right.
\end{array}\]
124.
In a class of $$30$$ pupils, $$12$$ take needle work, $$16$$ take physics and $$18$$ take history. If all the $$30$$ students take at least one subjects take and no one takes all three then the number of pupils taking $$2$$ subjects is :
Required number of one to one function
$$\eqalign{
& = {}^6{P_4} \cr
& = 6 \times 5 \times 4 \times 3 \cr
& = 360 \cr} $$
128.
Let $$f\left( x \right) = \frac{x}{{1 + {x^2}}}$$ and $$g\left( x \right) = \frac{{{e^{ - x}}}}{{1 + \left[ x \right]}},$$ where $$\left[ x \right]$$ is the greatest integer less than or equal to $$x.$$ Then,
A
$$D\left( {f + g} \right) = R - \left[ { - 2,\,0} \right)$$
B
$$D\left( {f + g} \right) = R - \left[ { - 1,\,0} \right)$$
C
$$R\left( f \right) \cap R\left( g \right) = \left[ { - 2,\,\frac{1}{2}} \right]$$
$$\eqalign{
& D\left( f \right) = R;\,D\left( g \right) = R - \left[ { - 1,\,0} \right) \cr
& \therefore \,\,D\left( {f + g} \right) \cr
& = D\left( f \right) \cap D\left( g \right) \cr
& = R \cap \left( {R - \left[ { - 1,\,0} \right)} \right) \cr
& = R \cap \left[ { - 1,\,0} \right) \cr
& R\left( f \right) = \left[ { - \frac{1}{2},\,\frac{1}{2}} \right];\,\,R\left( g \right) = R - \left\{ 0 \right\} \cr
& \therefore \,\,R\left( f \right) \cap R\left( g \right) \cr
& = \left[ { - \frac{1}{2},\,\frac{1}{2}} \right] \cap \left( {R - \left\{ 0 \right\}} \right) \cr
& = \left[ { - \frac{1}{2},\,\frac{1}{2}} \right] - \left\{ 0 \right\} \cr} $$
129.
In a school, there are $$20$$ teachers who teach Mathematics or Physics of these, $$12$$ teach Mathematics and $$4$$ teach both Maths and Physics. Then the number of teachers teaching only Physics are :
130.
Let $$R$$ be a relation on $${\bf{N}} \times {\bf{N}}$$ defined by $$\left( {a,\,b} \right)R\left( {c,\,d} \right) \Rightarrow ad\left( {b + c} \right) = bc\left( {a + d} \right).\,R$$ is :