31.
The values of $$p$$ and $$q$$ for which the function \[f\left( x \right) = \left\{ \begin{array}{l}
\frac{{\sin \left( {p + 1} \right)x + \sin \,x}}{x},\,x < 0\\
q,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0\\
\frac{{\sqrt {x + {x^2}} - \sqrt x }}{{{x^{\frac{3}{2}}}}},\,\,\,\,\,\,\,\,\,x > 0
\end{array} \right.\] is continuous for all $$x$$ in $$R,$$ are-
A
$$p = \frac{5}{2},\,\,q = \frac{1}{2}$$
B
$$p = - \frac{3}{2},\,\,q = \frac{1}{2}$$
C
$$p = \frac{1}{2},\,\,q = \frac{3}{2}$$
D
$$p = \frac{1}{2},\,\,q = - \frac{3}{2}$$
Answer :
$$p = - \frac{3}{2},\,\,q = \frac{1}{2}$$
View Solution
Discuss Question
$$\eqalign{
& {\bf{L}}{\bf{.H}}{\bf{.L}}{\bf{.}} = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left\{ {\left( {p + 1} \right)\left( { - h} \right)} \right\} - \sin \left( { - h} \right)}}{{ - h}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{ - \sin \left( {p + 1} \right)h}}{{ - h}} + \frac{{\sin \left( { - h} \right)}}{{ - h}} \cr
& = p + 1 + 1 \cr
& = p + 2 \cr
& {\bf{R}}{\bf{.H}}{\bf{.L}} = \mathop {\lim }\limits_{x \to {\sigma ^ + }} f\left( x \right) \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {1 + h} - 1}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{1}{{\left( {\sqrt {1 + h} + 1} \right)}} \cr
& = \frac{1}{2} \cr
& {\text{and }}f\left( 0 \right) = q\,\,\,\,\, \Rightarrow p = - \frac{3}{2},\,\,q = \frac{1}{2} \cr} $$
36.
$$\mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\frac{r}{{\sqrt {{n^2} + {r^2}} }}} $$ equals:
A
$$1 + \sqrt 5 $$
B
$$ - 1 + \sqrt 5 $$
C
$$ - 1 + \sqrt 2 $$
D
$$1 + \sqrt 2 $$
Answer :
$$ - 1 + \sqrt 5 $$
View Solution
Discuss Question
$$\eqalign{
& {\text{We have}} = \mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\frac{r}{{\sqrt {{n^2} + {r^2}} }}} \cr
& = \mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\frac{r}{{n\sqrt {1 + {{\left( {\frac{r}{n}} \right)}^2}} }}} \cr
& = \int_0^2 {\frac{x}{{\sqrt {1 + {x^2}} }}dx} \,\,\,\left[ {\because \mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{r}\sum\limits_{r\, = \,0}^{{a_n}} {f\left( {\frac{r}{n}} \right) = \int\limits_0^a {f\left( x \right)dx} } } \right] \cr
& = \left[ {\sqrt {1 + {x^2}} } \right]_0^2 = \sqrt 5 - 1 \cr} $$
38.
For $$x \in R,\,\,\,\mathop {\lim }\limits_{x\, \to \,\infty } {\left( {\frac{{x - 3}}{{x + 2}}} \right)^x} = ?$$
A
$$e$$
B
$${e^{ - \,1}}$$
C
$${e^{ - \,5}}$$
D
$${e^{ 5}}$$
Answer :
$${e^{ - \,5}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{For }}x \in R, \cr
& \mathop {\lim }\limits_{x\, \to \,\infty } {\left( {\frac{{x - 3}}{{x + 2}}} \right)^x} = \mathop {\lim }\limits_{x\, \to \,\infty } {\left\{ {{{\left[ {1 - \frac{5}{{x + 2}}} \right]}^{\frac{{ - \,\left( {x + 2} \right)}}{5}}}} \right\}^{\frac{{ - \,5x}}{{x + 2}}}} \cr
& = {e^{\mathop {\lim }\limits_{x \to \,\infty } - \,\frac{5}{{1\, + \,\frac{2}{x}}}}} = {e^{ - \,5}} \cr} $$
39.
Let $$a = \min \left\{ {{x^2} + 2x + 3,\,x\, \in \,R} \right\}$$ and $$b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \,\theta }}{{{\theta ^2}}}.$$ The value of $$\sum\limits_{r = 0}^n {{a^r} \cdot {b^{n - r}}} $$ is :
A
$$\frac{{{2^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
B
$$\frac{{{2^{n + 1}} + 1}}{{3 \cdot {2^n}}}$$
C
$$\frac{{{4^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
D
none of these
Answer :
$$\frac{{{4^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
View Solution
Discuss Question
$$\eqalign{
& {x^2} + 2x + 3 = {\left( {x + 1} \right)^2} + 2 \geqslant 2 \cr
& {\text{So, }}a = 2;\,\,b = \mathop {\lim }\limits_{\theta \to 0} \frac{{2\,{{\sin }^2}\frac{\theta }{2}}}{{{\theta ^2}}} = \frac{1}{2} \cr
& \therefore \sum\limits_{r = 0}^n {{a^r}{b^{n - r}} = {b^n} + a{b^{n - 1}} + {a^2}{b^{n - 2}} + ..... + {a^n}} \cr
& = \frac{{{b^n}\left\{ {1 - {{\left( {\frac{a}{b}} \right)}^{n + 1}}} \right\}}}{{1 - \frac{a}{b}}} \cr
& = \frac{{{{\left( {\frac{1}{2}} \right)}^n}\left\{ {1 - {4^{n + 1}}} \right\}}}{{1 - 4}} \cr
& = \frac{{{4^{n + 1}} - 1}}{{3 \times {2^n}}} \cr} $$