11.
The integral $$\int {\left( {1 + x - \frac{1}{x}} \right){e^{x\, + \,\frac{1}{x}}}dx} $$ is equal to-
A
$$\left( {x + 1} \right){e^{x\, + \,\frac{1}{x}}} + C$$
B
$$ - x{e^{x\, + \,\frac{1}{x}}} + C$$
C
$$\left( {x - 1} \right){e^{x\, + \,\frac{1}{x}}} + C$$
D
$$x{e^{x\, + \,\frac{1}{x}}} + C$$
Answer :
$$x{e^{x\, + \,\frac{1}{x}}} + C$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}I = \int {\left( {1 + x - \frac{1}{x}} \right){e^{x\,\, + \,\,\frac{1}{x}}}dx} \cr
& = \int {{e^{x\,\, + \,\,\frac{1}{x}}}} dx + \int {\left( {x - \frac{1}{x}} \right){e^{x\,\, + \,\,\frac{1}{x}}}dx} \cr
& = x.{e^{x\,\, + \,\,\frac{1}{x}}} - \int {x\left( {1 - \frac{1}{{{x^2}}}} \right){e^{x\,\, + \,\,\frac{1}{x}}}dx + \int {\left( {x - \frac{1}{x}} \right){e^{x\,\, + \,\,\frac{1}{x}}}dx} } \cr
& = x.{e^{x\,\, + \,\,\frac{1}{x}}} - \int {\left( {x - \frac{1}{{{x}}}} \right){e^{x\,\, + \,\,\frac{1}{x}}}dx + \int {\left( {x - \frac{1}{x}} \right){e^{x\,\, + \,\,\frac{1}{x}}}dx} } \cr
& = x.{e^{x\,\, + \,\,\frac{1}{x}}} + C \cr} $$
12.
If $$\int {\frac{{dx}}{{x\left( {{x^n} + 1} \right)}} = A\,\log \left| {\frac{{{x^n} + 1}}{{{x^n}}}} \right| + B,\,B\, \in {\bf{R}}.} $$
Then :
A
$$A = \frac{1}{2}$$
B
$$A = - 1$$
C
$$A = - \frac{1}{n}$$
D
$$A = \frac{1}{{2n}}$$
Answer :
$$A = - \frac{1}{n}$$
View Solution
Discuss Question
$$\eqalign{
& I = \int {\frac{{dx}}{{x\left( {{x^n} + 1} \right)}}} = \int {\frac{{dx}}{{{x^{n + 1}}\left( {1 + \frac{1}{{{x^n}}}} \right)}}} \cr
& {\text{Put }}1 + \frac{1}{{{x^n}}} = t \Rightarrow - \frac{n}{{{x^{n + 1}}}}dx = dt \cr
& I = - \frac{1}{n}\int {\frac{{dt}}{t}} \cr
& \Rightarrow I = - \frac{1}{n}\ln \,t + C \cr
& \Rightarrow I = - \frac{1}{n}\ln \left( {1 + \frac{1}{{{x^n}}}} \right) + C \cr
& \Rightarrow I = - \frac{1}{n}\ln \left( {\frac{{{x^n} + 1}}{{{x^n}}}} \right) + C \cr
& \therefore \,A = - \frac{1}{n} \cr} $$
13.
What is $$\int {\frac{{\log \,x}}{{{{\left( {1 + \log \,x} \right)}^2}}}dx} $$ equal to ?
Where $$c$$ is a constant
A
$$\frac{1}{{{{\left( {1 + \log \,x} \right)}^3}}} + c$$
B
$$\frac{1}{{{{\left( {1 + \log \,x} \right)}^2}}} + c$$
C
$$\frac{x}{{\left( {1 + \log \,x} \right)}} + c$$
D
$$\frac{x}{{{{\left( {1 + \log \,x} \right)}^2}}} + c$$
Answer :
$$\frac{x}{{\left( {1 + \log \,x} \right)}} + c$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}I = \int {\frac{{\log \,x}}{{{{\left( {1 + \log \,x} \right)}^2}}}dx} \cr
& {\text{Put }}\log \,x = t \Rightarrow \frac{1}{x}dx = dt \cr
& I = \int {\frac{{{e^t}t}}{{{{\left( {1 + t} \right)}^2}}}dt} \cr
& = \int {\frac{{{e^t}.\left( {t + 1 - 1} \right)}}{{{{\left( {1 + t} \right)}^2}}}} dt \cr
& = \int {\frac{{{e^t}\left( {1 + t} \right)}}{{{{\left( {1 + t} \right)}^2}}}} dt - \int {\frac{{{e^t}}}{{{{\left( {1 + t} \right)}^2}}}dt} \cr
& = \int {\frac{{{e^t}}}{{1 + t}}dt - } \int {\frac{{{e^t}}}{{{{\left( {1 + t} \right)}^2}}}dt} \cr
& = \frac{{{e^t}}}{{1 + t}} - \int { - {e^t}\frac{1}{{{{\left( {1 + t} \right)}^2}}}dt} - \int {\frac{{{e^t}}}{{{{\left( {1 + t} \right)}^2}}}dt} \cr
& = \frac{{{e^t}}}{{1 + t}} + \int {^{{e^t}}\frac{1}{{{{\left( {1 + t} \right)}^2}}}dt} - \int {\frac{{{e^t}}}{{{{\left( {1 + t} \right)}^2}}}dt} \cr
& = \frac{{{e^t}}}{{1 + t}} + c \cr
& = \frac{x}{{1 + \log \,x}} + c \cr} $$
14.
If $$\int {f\left( x \right)dx} = g\left( x \right) + c,$$ then $$\int {{f^{ - 1}}\left( x \right)dx} $$ is equal to :
A
$$x{f^{ - 1}}\left( x \right) + C$$
B
$$f\left( {{g^{ - 1}}\left( x \right)} \right) + C$$
C
$$x{f^{ - 1}}\left( x \right) - g\left( {{f^{ - 1}}\left( x \right)} \right) + C$$
D
$${g^{ - 1}}\left( x \right) + C$$
Answer :
$$x{f^{ - 1}}\left( x \right) - g\left( {{f^{ - 1}}\left( x \right)} \right) + C$$
View Solution
Discuss Question
Let $$I = \int {{f^{ - 1}}\left( x \right)dx} $$ and $${f^{ - 1}}\left( x \right) = t \Rightarrow x = f\left( t \right) \Rightarrow dx = f'\left( t \right)\,dt$$
Put value of $$dx$$ and $${f^{ - 1}}\left( x \right)$$ in $$I,$$ we get $$I = \int {tf'\left( t \right)dt} $$
Now, integrate it by parts, $$I = tf\left( t \right) - \int {f\left( t \right)} dt$$
Given, $$\int {f\left( x \right)dx = g} \left( x \right) + C$$
$$\therefore \,I = tf\left( t \right) - \left[ {g\left( t \right)} \right] + C$$
Now, by putting value of $$t,\,f\left( t \right)$$ and $$g\left( t \right)$$ we get,
$$I = x{f^{ - 1}}\left( x \right)g\left[ {{f^{ - 1}}\left( x \right)} \right] + C$$
15.
$$\int {{x^x}\left( {1 + \log \,x} \right)dx} $$ is equal to :
A
$${x^x}\log \,x + k$$
B
$${e^{{x^x}}} + k$$
C
$${x^x} + k$$
D
none of these
Answer :
$${x^x} + k$$
View Solution
Discuss Question
$$\frac{d}{{dx}}\left( {{x^x}} \right) = x.{x^{x - 1}} + {x^x}.\log \,x = {x^x}\left( {1 + \log \,x} \right)$$
16.
If $$\int {\frac{{dx}}{{{x^{22}}\left( {{x^7} - 6} \right)}} = A\left\{ {\ln {{\left( p \right)}^6} + 9{p^2} - 2{p^3} - 18p} \right\} + c} ,$$ then :
A
$$A = \frac{1}{{9072}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$
B
$$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$
C
$$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7}}}{{{x^7} - 6}}} \right)$$
D
$$A = \frac{1}{{9072}},\,\,p = {\left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)^{ - 1}}$$
Answer :
$$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}I = \int {\frac{{dx}}{{{x^{29}}\left( {1 - \frac{6}{{{x^7}}}} \right)}}} \cr
& {\text{Put }}1 - \frac{6}{{{x^7}}} = p \Rightarrow \frac{{42}}{{{x^8}}}dx = dp{\text{ and }}{x^7} = \frac{6}{{1 - p}} \cr
& \therefore \,I = \frac{1}{{42}}\int {\frac{{{{\left( {1 - p} \right)}^3}}}{{{{\left( 6 \right)}^3}p}}dp} \cr
& = \frac{1}{{\left( {42} \right)\left( {216} \right)}}\int {\frac{{1 - {p^3} - 3p + 3{p^2}}}{p}} dp \cr
& = \frac{1}{{9072}}\int {\left( {\frac{1}{p} - {p^2} - 3 + 3p} \right)} dp \cr
& = \frac{1}{{9072}}\left( {\log \,p - \frac{{{p^3}}}{3} - 3p + \frac{3}{2}{p^2}} \right) + c \cr
& = \frac{1}{{54432}}\left( {6\,\ln \,p - 2{p^3} - 18p + 9{p^2}} \right) + c \cr
& = \frac{1}{{54432}}\left( {\ln \,{p^6} + 9{p^2} - 2{p^3} - 18p} \right) + c \cr
& A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right) \cr} $$
17.
If $$\int {x\,\log \left( {1 + \frac{1}{x}} \right)dx} = f\left( x \right)\log \left( {x + 1} \right) + g\left( x \right){x^2} + Lx + C,$$ then :
A
$$f\left( x \right) = \frac{1}{2}{x^2}$$
B
$$g\left( x \right) = \log \,x$$
C
$$L = 1$$
D
none of these
Answer :
none of these
View Solution
Discuss Question
$$\eqalign{
& \int {x\,\log \left( {1 + \frac{1}{x}} \right)dx} \cr
& = \log \left( {1 + \frac{1}{x}} \right).\frac{{{x^2}}}{2} - \int {\frac{x}{{x + 1}}.\left( { - \frac{1}{{{x^2}}}} \right).\frac{{{x^2}}}{2}} dx \cr
& = \frac{{{x^2}}}{2}\log \left( {\frac{{x + 1}}{x}} \right).\frac{{{x^2}}}{2} + \frac{1}{2}\int {\frac{{x + 1 - 1}}{{x + 1}}} dx \cr
& = \frac{{{x^2}}}{2}\log \left( {\frac{{x + 1}}{x}} \right) + \frac{1}{2}x - \frac{1}{2}\log \left( {x + 1} \right) + c \cr
& = \left( {\frac{{{x^2} - 1}}{2}} \right)\log \left( {x + 1} \right) - \frac{{{x^2}}}{2}\log \,x + \frac{1}{2}x + c \cr} $$
18.
$$\int {\frac{{dx}}{{\cos \,x + \sqrt 3 \sin \,x}}} $$ is equal to :
A
$$\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{3}} \right) + k$$
B
$$\log \,\tan \left( {\frac{x}{2} - \frac{\pi }{3}} \right) + k$$
C
$$\frac{1}{2}\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{3}} \right) + k$$
D
none of these
Answer :
$$\frac{1}{2}\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{3}} \right) + k$$
View Solution
Discuss Question
$$\eqalign{
& I = \int {\frac{{dx}}{{2\cos \left( {x - \frac{\pi }{3}} \right)}}} \cr
& \,\,\,\,\, = \frac{1}{2}\int {\sec \left( {x - \frac{\pi }{3}} \right)dx} \cr
& \,\,\,\,\, = \frac{1}{2}\log \left\{ {\sec \left( {x - \frac{\pi }{3}} \right) + \tan \left( {x - \frac{\pi }{3}} \right)} \right\} + k \cr
& \,\,\,\,\, = \frac{1}{2}\log \,\tan \left( {\frac{\pi }{2} + \frac{{x - \frac{\pi }{3}}}{2}} \right) + k \cr
& \,\,\,\,\, = \frac{1}{2}\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{3}} \right) + k \cr} $$
19.
If $$\int {g\left( x \right)dx = g\left( x \right)} ,$$ then $$\int {g\left( x \right)\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $$ is equal to :
A
$$g\left( x \right)f\left( x \right) - g\left( x \right)f'\left( x \right) + C$$
B
$$g\left( x \right)f'\left( x \right) + C$$
C
$$g\left( x \right)f\left( x \right) + C$$
D
$$g\left( x \right){f^2}\left( x \right) + C$$
Answer :
$$g\left( x \right)f\left( x \right) + C$$
View Solution
Discuss Question
$$\eqalign{
& \int {g\left( x \right)\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} \cr
& = \int {g\left( x \right)f\left( x \right)dx} + \int {g\left( x \right)f'\left( x \right)dx} \cr
& = f\left( x \right)\int {g\left( x \right)dx - } \int {\left\{ {f'\left( x \right)\int {g\left( x \right)} dx} \right\}dx + \int {g\left( x \right)f'\left( x \right)dx} } \cr
& = f\left( x \right)g\left( x \right) - \int {f'\left( x \right)g\left( x \right)dx + \int {g\left( x \right)f'\left( x \right)dx} } \,\,\,\left[ {{\text{Given }}\int {g\left( x \right)dx = g\left( x \right)} } \right] \cr
& = f\left( x \right)g\left( x \right) + c \cr} $$
20.
What is $$\int {{{\sec }^n}x\,\tan \,x\,dx} $$ equal to ?
Where $$'c’$$ is a constant of integration.
A
$$\frac{{{{\sec }^n}x}}{n} + c$$
B
$$\frac{{{{\sec }^{n - 1}}x}}{{n - 1}} + c$$
C
$$\frac{{{{\tan }^n}x}}{n} + c$$
D
$$\frac{{{{\tan }^{n - 1}}x}}{{n - 1}} + c$$
Answer :
$$\frac{{{{\sec }^n}x}}{n} + c$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}I = \int {{{\sec }^n}x\,\tan \,x\,dx} \cr
& {\text{Put, }}\sec \,x = t \Rightarrow \sec \,x\,\tan \,x\,dx = dt \cr
& \therefore \,I = \int {{t^n}.\frac{{dt}}{t}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = \int {{t^{n - 1}}dt} \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{t^n}}}{n} + c \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\sec }^n}x}}{n} + c \cr} $$
where $$'c’$$ is a constant of integration.