81.
Suppose $$f\left( x \right) = {e^{ax}} + {e^{bx}},$$ where $$a \ne b,$$ and that $$f''\left( x \right) - 2f'\left( x \right) - 15f\left( x \right) = 0$$ for all $$x.$$ Then the product $$ab$$ is :
A
$$25$$
B
$$9$$
C
$$ - 15$$
D
$$ - 9$$
Answer :
$$ - 15$$
View Solution
Discuss Question
$$\eqalign{
& \left( {{a^2} - 2a - 15} \right){e^{ax}} + \left( {{b^2} - 2b - 15} \right){e^{bx}} = 0 \cr
& {\text{or, }}\left( {{a^2} - 2a - 15} \right) = 0{\text{ and }}\left( {{b^2} - 2b - 15} \right) = 0 \cr
& {\text{or, }}\left( {a - 5} \right)\left( {a + 3} \right) = 0{\text{ and }}\left( {b - 5} \right)\left( {b + 3} \right) = 0 \cr
& {\text{i}}{\text{.e}}{\text{., }}a = 5{\text{ or }} - 3{\text{ and }}b = 5{\text{ or }} - 3 \cr
& \therefore \,a \ne b \cr
& {\text{Hence, }}a = 5{\text{ and }}b = - 3{\text{ or }}a = - 3{\text{ and }}b = 5 \cr
& {\text{or }}ab = - 15 \cr} $$
82.
Consider the function, $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right|,\,x \in \,R.$$
Statement-1 : $$f'\left( 4 \right) = 0$$
Statement-2 : $$f$$ is continuous in [2, 5], differentiable in (2, 5) and $$f\left( 2 \right) = f\left( 5 \right).$$
A
Statement-1 is false, Statement-2 is true.
B
Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
C
Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.
D
Statement-1 is true, statement-2 is false.
Answer :
Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.
View Solution
Discuss Question
\[\begin{array}{l}
f\left( x \right) = \left| {x - 2} \right| = \left\{ \begin{array}{l}
x - 2\,\,,\,\,x - 2 \ge 0\\
2 - x\,\,,\,\,x - 2 \le 0
\end{array} \right.\\
= \left\{ \begin{array}{l}
x - 2\,\,,\,\,x \ge 2\\
2 - x\,\,,\,\,x \le 2
\end{array} \right.
\end{array}\]
Similarly, \[f\left( x \right) = \left| {x - 5} \right| = \left\{ \begin{array}{l}
x - 5\,\,,\,\,x \ge 5\\
5 - x\,\,,\,\,x \le 5
\end{array} \right.\]
$$\eqalign{
& \therefore f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right| \cr
& = \left\{ {x - 2 + 5 - x = 3,\,\,2 \leqslant x \leqslant 5} \right\} \cr
& {\text{Thus}} \cr
& f\left( x \right) = 3,\,2 \leqslant x \leqslant 5 \cr
& f'\left( x \right) = 0,\,2 < x < 5 \cr
& f'\left( 4 \right) = 0 \cr} $$
$$\therefore $$ statement 1 is true.
$$\because f\left( 2 \right) = 0 + \left| {2 - 5} \right| = 3$$ and $$f\left( 5 \right) = \left| {5 - 2} \right| + 0 = 3$$
$$\therefore $$ statement-2 is also true and a correct explanation for statement 1.
83.
If $$y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {1 + \sin \,x} + \sqrt {1 - \sin \,x} }}{{\sqrt {1 + \sin \,x} - \sqrt {1 - \sin \,x} }}} \right]$$ where $$0 < x < \frac{x}{2},$$ then $$\frac{{dy}}{{dx}}$$ is equal to :
A
$$\frac{1}{2}$$
B
$$2$$
C
$$\sin \,x + \cos \,x$$
D
$$\sin \,x - \cos \,x$$
Answer :
$$\frac{1}{2}$$
View Solution
Discuss Question
$$\eqalign{
& y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {1 + \sin \,x} + \sqrt {1 - \sin \,x} }}{{\sqrt {1 + \sin \,x} - \sqrt {1 - \sin \,x} }}} \right] \cr
& y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} + 2\,\sin \frac{x}{2}\cos \frac{x}{2}} + \sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} - 2\,\sin \frac{x}{2}\cos \frac{x}{2}} }}{{\sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} + 2\,\sin \frac{x}{2}\cos \frac{x}{2}} - \sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} - 2\,\sin \frac{x}{2}\cos \frac{x}{2}} }}} \right] \cr
& y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {{{\left( {\cos \frac{x}{2} + \sin \frac{x}{2}} \right)}^2}} + \sqrt {{{\left( {\cos \frac{x}{2} - \sin \frac{x}{2}} \right)}^2}} }}{{\sqrt {{{\left( {\cos \frac{x}{2} + \sin \frac{x}{2}} \right)}^2}} - \sqrt {{{\left( {\cos \frac{x}{2} - \sin \frac{x}{2}} \right)}^2}} }}} \right] \cr
& y = {\cot ^{ - 1}}\left[ {\frac{{\cos \frac{x}{2} + \sin \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2}}}{{\cos \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2} + \sin \frac{x}{2}}}} \right] \cr
& y = {\cot ^{ - 1}}\left[ {\frac{{2\,\cos \frac{x}{2}}}{{2\,\sin \frac{x}{2}}}} \right] \cr
& y = {\cot ^{ - 1}}\left( {\cot \frac{x}{2}} \right) \cr
& y = \frac{x}{2} \cr
& \frac{{dy}}{{dx}} = \frac{1}{2} \cr} $$
84.
If $$y = \sin \,2x$$ then $$\frac{{{d^6}y}}{{d{x^6}}}$$ at $$x = \frac{\pi }{2}$$ is equal to :
A
$$-64$$
B
$$0$$
C
$$64$$
D
none of these
Answer :
$$0$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{dy}}{{dx}} = 2\cos \,2x = 2\sin \left( {2x + \frac{\pi }{2}} \right) \cr
& \therefore \frac{{{d^2}y}}{{d{x^2}}} = {2^2}\cos \left( {2x + \frac{\pi }{2}} \right)\,\,\, = {2^2}\sin \left( {2x + 2.\frac{\pi }{2}} \right) \cr
& \frac{{{d^6}y}}{{d{x^6}}} = {2^6}.\sin \left( {2x + 6.\frac{\pi }{2}} \right) = {2^6}\sin \left( {2x + 3\pi } \right) \cr} $$
85.
If $$y = {\left( {1 + \frac{1}{x}} \right)^x}$$ then $$\frac{{2\sqrt {{y_2}\left( 2 \right) + \frac{1}{8}} }}{{\left( {\log \frac{3}{2} - \frac{1}{3}} \right)}}$$ is equal to -
A
3
B
4
C
1
D
2
Answer :
3
View Solution
Discuss Question
Let $$y = {\left( {1 + \frac{1}{x}} \right)^x}$$
Taking logarithm of both sides, we get
$$\eqalign{
& \log \,y = x\left[ {\log \left( {1 + \frac{1}{x}} \right)} \right] \cr
& \Rightarrow \frac{1}{y}{y_1}\left( x \right) = \frac{{{x^2}}}{{x + 1}}\left( { - \frac{1}{{{x^2}}}} \right) + \log \left( {1 + \frac{1}{x}} \right) \cr
& = - \frac{1}{{x + 1}} + \log \left( {1 + \frac{1}{x}} \right).....(1) \cr
& {\text{Since,}}\,y\left( 2 \right) = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4} \cr
& {\text{So, }}{y_1}\left( 2 \right) = \left( {\frac{9}{4}} \right)\left( { - \frac{1}{3} + \log \frac{3}{2}} \right) \cr} $$
Again differentiate equation (1) w.r.t. $$\left( x \right),$$ we get
$$\frac{{y\left( x \right){y_2}\left( x \right) - {{\left[ {{y_1}\left( x \right)} \right]}^2}}}{{{{\left( {y\left( x \right)} \right)}^2}}} = \frac{1}{{{{\left( {1 + x} \right)}^2}}} - \frac{1}{{x\left( {x + 1} \right)}}$$
By putting $$x = 2,$$ we get
$$\frac{{y\left( 2 \right){y_2}\left( 2 \right) - {{\left( {{y_1}\left( 2 \right)} \right)}^2}}}{{{{\left( {y\left( 2 \right)} \right)}^2}}} = \frac{{ - 1}}{{18}}$$
Now, put value of $$y\left( 2 \right)$$ and $${y_1}\left( 2 \right)$$
$$\eqalign{
& \Rightarrow {y_2}\left( 2 \right) = \left( {\frac{9}{4}} \right){\left( { - \frac{1}{3} + \log \frac{3}{2}} \right)^2} - \frac{1}{8} \cr
& \Rightarrow {\left( {{y_2}\left( 2 \right) + \frac{1}{8}} \right)^4} = 9{\left( {\log \frac{3}{2} - \frac{1}{3}} \right)^2} \cr
& \Rightarrow {\text{ Required expression }} = 3 \cr} $$
86.
If $$f''\left( x \right) = - f\left( x \right)$$ and $$g\left( x \right) = f'\left( x \right)$$ and $$F\left( x \right) = {\left( {f\left( {\frac{x}{2}} \right)} \right)^2} + {\left( {g\left( {\frac{x}{2}} \right)} \right)^2}$$ and given that $$F\left( 5 \right) = 5,$$ then $$F\left( {10} \right)$$ is equal to :
A
5
B
10
C
0
D
15
Answer :
5
View Solution
Discuss Question
$$\eqalign{
& F'\left( x \right) = \left[ {f\left( {\frac{x}{2}} \right).f'\left( {\frac{x}{2}} \right) + g\left( {\frac{x}{2}} \right).g'\left( {\frac{x}{2}} \right)} \right] \cr
& {\text{Here, }}g\left( x \right) = f'\left( x \right){\text{ and }}g'\left( x \right) = f''\left( x \right) = - f\left( x \right) \cr
& {\text{So, }}F'\left( x \right) = f\left( {\frac{x}{2}} \right).g\left( {\frac{x}{2}} \right) - f\left( {\frac{x}{2}} \right).g\left( {\frac{x}{2}} \right) = 0 \cr
& \Rightarrow \,F\left( x \right){\text{ is constant function}} \cr
& {\text{So, }}F\left( {10} \right) = 5 \cr} $$
87.
If $$f\left( x \right) = \left| {1 - x} \right|,$$ then the points where $${\sin ^{ - 1}}\left( {f\left| x \right|} \right)$$ is non-differentiable are :
A
$$\left\{ {0,\,1} \right\}$$
B
$$\left\{ {0,\, - 1} \right\}$$
C
$$\left\{ {0,\,1,\, - 1} \right\}$$
D
none of these
Answer :
$$\left\{ {0,\,1,\, - 1} \right\}$$
View Solution
Discuss Question
Given that $$f\left( x \right) = \left| {1 - x} \right|$$
\[\therefore \,f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}
\,\,\,\,x - 1,\,\,\,\,\,\,\,\,\,\,\,\,x > 1\\
\,\,\,\,1 - x,\,\,\,\,\,\,\,\,0 < x \le 1\\
\,\,\,\,1 + x,\,\,\,\,\, - 1 \le x \le 0\\
- x - 1,\,\,\,\,\,\,\,\,\,\,x < - 1
\end{array} \right.\]
Clearly, the domain of $${\sin ^{ - 1}}\left( {f\left| x \right|} \right)$$ is $$\left[ { - 2,\,2} \right].$$
Therefore, it is non-differentiable at the points $$\left\{ { - 1,\,0,\,1} \right\}.$$
88.
If $$y = {\cos ^{ - 1}}\left( {\cos \,x} \right)$$ then $$\frac{{dy}}{{dx}}$$ at $$x = \frac{{5\pi }}{4}$$ is equal to :
A
1
B
$$-1$$
C
$$\frac{1}{{\sqrt 2 }}$$
D
none of these
Answer :
$$-1$$
View Solution
Discuss Question
$$y = {\cos ^{ - 1}}\cos \left( {\pi + \overline {x - \pi } } \right) = {\cos ^{ - 1}}\cos \left( {\pi - \overline {x - \pi } } \right).$$ When $$x$$ is around $$\frac{{5\pi }}{4},\,\pi - \overline {x - \pi } $$ is in the second quadrant. So, $$y = \pi - \left( {x - \pi } \right)\,;\,\,\,\,\,\,\therefore \,\,\frac{{dy}}{{dx}} = - 1$$
89.
If $${y^2} = P\left( x \right) = a$$ polynomial of degree 3 then $$2\frac{d}{{dx}}\left( {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right)$$ equals :
A
$$P'''\left( x \right) + P'\left( x \right)$$
B
$$P''\left( x \right).P'''\left( x \right)$$
C
$$P\left( x \right).P'''\left( x \right)$$
D
none of these
Answer :
$$P\left( x \right).P'''\left( x \right)$$
View Solution
Discuss Question
$$\eqalign{
& {y^2} = P\left( x \right) \cr
& \Rightarrow 2y\frac{{dy}}{{dx}} = P'\left( x \right) \cr
& \Rightarrow 2{\left( {\frac{{dy}}{{dx}}} \right)^2} + 2y\frac{{{d^2}y}}{{d{x^2}}} = P''\left( x \right) \cr
& \therefore 2y = \frac{{{d^2}y}}{{d{x^2}}} = P''\left( x \right) - 2{\left( {\frac{{dy}}{{dx}}} \right)^2} \cr
& {\text{or,}}\,\,2{y^3}\frac{{{d^2}y}}{{d{x^2}}} = {y^2}P''\left( x \right) - 2{y^2}{\left( {\frac{{dy}}{{dx}}} \right)^2} \cr
& {\text{or,}}\,\,2{y^3}\frac{{{d^2}y}}{{d{x^2}}} = P\left( x \right).P''\left( x \right) - \frac{1}{2}{\left\{ {P'\left( x \right)} \right\}^2} \cr
& {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x, \cr
& \,\,2\frac{d}{{dx}}\left( {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right) \cr
& = P'\left( x \right).P''\left( x \right) + P\left( x \right).P'''\left( x \right) - P'\left( x \right).P''\left( x \right) \cr
& = P\left( x \right).P'''\left( x \right) \cr} $$
90.
If for all $$x,\,y$$ the function $$f$$ is defined by
$$f\left( x \right) + f\left( y \right) + f\left( x \right).f\left( y \right) = 1$$ and $$f\left( x \right) > 0$$ then :
A
$$f'\left( x \right)$$ does not exist
B
$$f'\left( x \right) = 0$$ for all $$x$$
C
$$f'\left( 0 \right) < f'\left( 1 \right)$$
D
none of these
Answer :
$$f'\left( x \right) = 0$$ for all $$x$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Putting }}x = 0,\,y = 0,\,\,{\text{we get }}2f\left( 0 \right){\text{ + }}{\left\{ {f\left( 0 \right)} \right\}^2}{\text{ = 1}} \cr
& \Rightarrow f\left( 0 \right) = \sqrt 2 - 1\,\,\,\,\left\{ {\because \,f\left( 0 \right) > 0} \right\} \cr
& {\text{Putting }}y = x,\,\,\,2f\left( x \right) + {\left\{ {f\left( x \right)} \right\}^2} = 1 \cr
& {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x,{\text{ }} \cr
& {\text{2}}f'\left( x \right) + 2f\left( x \right).f'\left( x \right) = 0\,\,\,\,\,{\text{or}},\,\,f'\left( x \right)\left\{ {1 + f\left( x \right)} \right\} = 0 \cr
& \Rightarrow f'\left( x \right) = 0,\,\,{\text{because }}f\left( x \right) > 0 \cr} $$