71.
If $$f\left( x \right) = \frac{{\left[ x \right]}}{{\left| x \right|}},\,x \ne 0$$ where $$\left[ \cdot \right]$$ denotes the greatest integer function, then $$f'\left( 1 \right)$$ is :
$$\eqalign{
& {x^2} + {t^2} = y \cr
& \Rightarrow \frac{{dy}}{{dx}} = 2x + 2t.\frac{{dt}}{{dx}}......\left( 1 \right) \cr
& {\text{As }}t = \frac{x}{{1 + {x^2}}} \Rightarrow \frac{{dt}}{{dx}} = \frac{{1 - {x^2}}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr
& {\text{Substitute these value of }}t{\text{ and }}\frac{{dt}}{{dx}}{\text{ in }}\left( 1 \right){\text{, we get}} \cr
& \frac{{dy}}{{dx}} = 2x + \frac{{2x}}{{1 + {x^2}}}.\frac{{1 - {x^2}}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr
& {\text{On putting }}x = 2{\text{ in }}\frac{{dy}}{{dx}},{\text{ we get}} \cr
& \frac{{dy}}{{dx}} = \frac{{488}}{{125}} \cr} $$
73.
There exists a function $$f\left( x \right)$$ satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) - 1,\,f\left( x \right) > 0$$ for all $$x$$ and
A
$$f'\left( x \right) < 0$$ for all $$x$$
B
$$ - 1 < f''\left( x \right) < 0$$ for all $$x$$
C
$$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$ for all $$x$$
D
$$f''\left( x \right) \leqslant - 2$$ for all $$x$$
$$f\left( x \right) = {e^{ - x}}$$ satisfies $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$
It also satisfies $$f'\left( x \right) < 0$$ for all $$x.$$
74.
The number of points of non-differentiability for $$f\left( x \right) = \max \left\{ {\left| {\left| x \right| - 1} \right|,\,\frac{1}{2}} \right\}$$ is :
77.
Let $$f:R \to R$$ be a function defined by $$f\left( x \right) = \min \left\{ {x + 1,\,\left| x \right| + 1} \right\}.$$ Then which of the following is true ?
A
$$f\left( x \right)$$ is differentiable everywhere
B
$$f\left( x \right)$$ is not differentiable at $$x = 0$$
C
$$f\left( x \right) \geqslant 1$$ for all $$x\, \in \,R$$
D
$$f\left( x \right)$$ is not differentiable at $$x = 1$$
Answer :
$$f\left( x \right)$$ is differentiable everywhere
79.
Let $$f$$ be a function which is continuous and differentiable for all real $$x.$$ If $$f\left( 2 \right) = - 4$$ and $$f'\left( x \right) \geqslant 6$$ for all $$x\, \in \left[ {2,\,4} \right],$$ then :