64.
If $$f$$ is a real valued differentiable function satisfying $$\left| {f\left( x \right) - f\left( y \right)} \right| \leqslant {\left( {x - y} \right)^2},\,x,\,y\, \in \,R$$ and $$f\left( 0 \right) = 0,$$ then $$f\left( 1 \right)$$ equals-
$$\eqalign{
& f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{\left| x \right|}}} ,\,x \ne 0,\,f\left( 0 \right) = 0 \cr
& \therefore \,f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{ - x}}} = \root 3 \of {{ - x^3}} = - x{\text{ if }}x < 0 \cr
& \& \,f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{x}} = \root 3 \of {{x^3}} = x{\text{ if }}x > 0 \cr} $$
\[f\left( x \right) = \left\{ \begin{array}{l}
- x,{\rm{ \,if\, }}x < 0\\
\,\,\,\,\,0,{\rm{ \,if\, }}x = 0\\
\,\,\,\,\,x,{\rm{ \,if\, }}x > 0\,\,
\end{array} \right.\]
Clearly $$f\left( x \right)$$ is continuous for all $$x$$ but not differentiable at $$x = 0$$
67.
Let $$f\left( x \right) = 15 - \left| {x - 10} \right|\,;\,x\,R.$$ Then the set of all values of $$x,$$ at which the function, $$g\left( x \right) = f\left( {f\left( x \right)} \right)$$ is not differentiable, is:
69.
Let $$f\left( x \right)$$ be differentiable on the interval $$\left( {0,\,\infty } \right)$$ such that $$f\left( 1 \right) = 1,$$ and $$\mathop {\lim }\limits_{t \to x} \frac{{{t^2}f\left( x \right) - {x^2}f\left( t \right)}}{{t - x}} = 1$$ for each $$x > 0.$$ Then $$f\left( x \right)$$ is-
Given that $$f\left( x \right)$$ is differentiable on $$\left( {0,\,\infty } \right)$$ with
$$f\left( 1 \right) = 1\,{\text{and}}\mathop {\lim }\limits_{t \to x} \frac{{{t^2}f\left( x \right) - {x^2}f\left( t \right)}}{{t - x}} = 1$$ for each $$x>0$$
$$\eqalign{
& \Rightarrow \mathop {\lim }\limits_{t \to x} \frac{{2t\,f\left( x \right) - {x^2}f'\left( t \right)}}{1} = 1\,\,\left[ {{\text{using L'Hospital rule}}} \right] \cr
& \Rightarrow 2x\,f\left( x \right) - {x^2}\,f'\left( x \right) = 1 \cr
& \Rightarrow f'\left( x \right) - \frac{2}{x}f\left( x \right) = - \frac{1}{{{x^2}}}\left[ {{\text{Linear differential equation}}} \right] \cr} $$
Integrating factor
$$\eqalign{
& {e^{\int { - \,\frac{2}{x}dx} }} = {e^{ - 2\,\log \,x}} = {e^{\log \frac{1}{{{x^2}}}}} = \frac{1}{{{x^2}}} \cr
& \therefore \,\,{\text{Solution is}}\,f\left( x \right) \times \frac{1}{{{x^2}}} = \int {\left( { - \frac{1}{{{x^2}}}} \right) \times \frac{1}{{{x^2}}}dx} \cr
& \Rightarrow \frac{{f\left( x \right)}}{{{x^2}}} = \frac{1}{{3{x^3}}} + C \cr
& \Rightarrow f\left( x \right) = C{x^2} + \frac{1}{{3x}} \cr
& {\text{Also }}f\left( 1 \right) = 1 \cr
& \Rightarrow 1 = C + \frac{1}{3} \cr
& \Rightarrow C = \frac{2}{3} \cr
& \therefore f\left( x \right) = \frac{2}{3}{x^2} + \frac{1}{{3x}} \cr} $$
70.
If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$ then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$ is-