21.
What is the derivative of $${\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} - 1}}{x}} \right)$$ with respect to $${\tan ^{ - 1}}x\,?$$
A
$$0$$
B
$$\frac{1}{2}$$
C
$$1$$
D
$$x$$
Answer :
$$\frac{1}{2}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}y = {\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {x^2}} - 1}}{x}} \right]{\text{ and }}u = {\tan ^{ - 1}}x \cr
& {\text{Put }}x = \tan \,\theta \, \Rightarrow \theta = {\tan ^{ - 1}}x \cr
& {\text{Then, }}y = {\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {{\tan }^2}\theta } - 1}}{{\tan \,\theta }}} \right] \cr
& = {\tan ^{ - 1}}\left[ {\frac{{\sqrt {{{\sec }^2}\theta } - 1}}{{\tan \,\theta }}} \right] \cr
& = {\tan ^{ - 1}}\left[ {\frac{{\sec \,\theta - 1}}{{\tan \,\theta }}} \right] \cr
& = {\tan ^{ - 1}}\left[ {\frac{{\frac{1}{{\cos \,\theta }} - 1}}{{\frac{{\sin \,\theta }}{{\cos \,\theta }}}}} \right] \cr
& = {\tan ^{ - 1}}\left[ {\frac{{1 - \cos \,\theta }}{{\sin \,\theta }}} \right] \cr
& = {\tan ^{ - 1}}\left[ {\frac{{2\,{{\sin }^2}\frac{\theta }{2}}}{{2\,\sin \frac{\theta }{2}.\cos \frac{\theta }{2}}}} \right] \cr
& \left( {\because \,1 - \cos \,\theta = 2\,{{\sin }^2}\frac{\theta }{2}{\text{ and }}\sin \,x = 2\,\sin \frac{x}{2}.\,\cos \frac{x}{2}} \right) \cr
& = {\tan ^{ - 1}}\left[ {\tan \frac{\theta }{2}} \right] \cr
& \Rightarrow \,y = \frac{\theta }{2} \cr
& \Rightarrow y = \frac{{{{\tan }^{ - 1}}x}}{2}\,\,\,\,\,\,\left[ {\because \,\theta = {{\tan }^{ - 1}}x} \right] \cr
& \Rightarrow y = \frac{u}{2}\,;\,\,\,\frac{{dy}}{{du}} = \frac{1}{2} \cr} $$
22.
If the derivative of the function \[f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,\,a{x^2} + b\,\,\,\,\,\,\,\,\,\,\,x < - 1\\
b{x^2} + ax + a\,\,\,x \ge - 1
\end{array} \right.\] is every where continuous, then what are the values of $$a$$ and $$b\,?$$
A
$$a = 2,\,b = 3$$
B
$$a = 3,\,b = 2$$
C
$$a = - 2,\,b = - 3$$
D
$$a = - 3,\,b = - 2$$
Answer :
$$a = 2,\,b = 3$$
View Solution
Discuss Question
\[\begin{array}{l}
{\rm{Derivative\, of\, }}f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,\,a{x^2} + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,x < - 1\\
b{x^2} + ax + a\,\,\,x \ge - 1
\end{array} \right.{\rm{ \,is\,}}\\
f'\left( x \right) = \left\{ \begin{array}{l}
\,\,\,\,2ax\,\,\,\,\,\,\,\,\,\,\,\,\,x < - 1\\
2bx + a\,\,\,\,\,x \ge - 1
\end{array} \right.
\end{array}\]
If $$f'\left( x \right)$$ is continuous everywhere then it is also continuous at $$x = - 1$$
$$\eqalign{
& {\left. {f'\left( x \right)} \right|_{x = - 1}} = - 2a = - 2b + a \cr
& {\text{or, }}3a = 2b.....({\text{i}}) \cr} $$
From the given choice $$a = 2,\,b = 3$$ satisfied this equation.
23.
If $$f\left( x \right) = \left| {\cos \,2x} \right|,$$ then $$f'\left( {\frac{\pi }{4} + 0} \right)$$ is equal to :
A
$$2$$
B
$$0$$
C
$$-2$$
D
none of these
Answer :
$$2$$
View Solution
Discuss Question
$$\eqalign{
& f'\left( {\frac{\pi }{4} + 0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\left| {\cos \,2\left( {\frac{\pi }{4} + h} \right)} \right| - \left| {\cos \,2.\frac{\pi }{4}} \right|}}{h} \cr
& f'\left( {\frac{\pi }{4} + 0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \,2h}}{h} \cr
& f'\left( {\frac{\pi }{4} + 0} \right) = 2 \cr} $$
24.
The integer $$n$$ for which $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\cos \,x - 1} \right)\left( {\cos \,x - {e^x}} \right)}}{{{x^n}}}$$ is a finite non-zero number is-
A
$$1$$
B
$$2$$
C
$$3$$
D
$$4$$
Answer :
$$3$$
View Solution
Discuss Question
Given that,
$$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\cos \,x - 1} \right)\left( {\cos \,x - {e^x}} \right)}}{{{x^n}}} = $$ finite non zero number
$$\eqalign{
& \mathop { = \lim }\limits_{x \to 0} \frac{{\left( {1 - \cos \,x} \right)\left( {1 + \cos \,x} \right)\left( {{e^x} - \cos \,x} \right)}}{{{x^n}\left( {1 + \cos \,x} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{{{\sin }^2}\,x}}{{{x^2}}}} \right).\left( {\frac{{{e^x} - \cos \,x}}{{{x^{n - 2}}}}} \right).\left( {\frac{1}{{1 + \cos \,x}}} \right) \cr
& = \mathop {\lim }\limits_{x \to 0} {1^2}.\frac{{{e^x} - \cos \,x}}{{{x^{n - 2}}}}.\frac{1}{2} \cr
& = \frac{1}{2}\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - \sin \,x}}{{\left( {x - 2} \right){x^{n - 3}}}}\,\,\,\left[ {{\text{using L'Hospital rule}}} \right] \cr} $$
For this limit to be finite, $$n - 3 = 0 \Rightarrow n = 3$$
25.
What is $$\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + x} - 1}}{x}$$ equal to ?
A
$$0$$
B
$$\frac{1}{2}$$
C
$$1$$
D
$$ - \frac{1}{2}$$
Answer :
$$\frac{1}{2}$$
View Solution
Discuss Question
$$\eqalign{
& \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + x} - 1}}{x} \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + x} - 1}}{x} \times \frac{{\sqrt {1 + x} + 1}}{{\sqrt {1 + x} + 1}} \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{1 + x - 1}}{{x\left[ {\sqrt {1 + x} + 1} \right]}} \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {1 + x} + 1}} \cr
& = \frac{1}{{\sqrt {1 + 0} + 1}} \cr
& = \frac{1}{2} \cr} $$
26.
Let $$f:R \to R$$ be a function defined by $$f\left( x \right) = \max \,\left\{ {x,\,{x^3}} \right\}.$$ The set of all points where $$f\left( x \right)$$ is NOT differentiable is-
A
$$\left\{ { - 1,\,1} \right\}$$
B
$$\left\{ { - 1,\,0} \right\}$$
C
$$\left\{ {0,\,1} \right\}$$
D
$$\left\{ { - 1,\,0,\,1} \right\}$$
Answer :
$$\left\{ { - 1,\,0,\,1} \right\}$$
View Solution
Discuss Question
\[\begin{array}{l}
f\left( x \right) = \max \,\left\{ {x,\,{x^3}} \right\}\\
= \left\{ \begin{array}{l}
x\,\,\,\,;\,\,x < - 1\\
{x^3}\,\,;\,\, - 1 \le x \le 0\\
x\,\,\,\,;\,\,0 \le x \le 1\\
{x^3}\,\,;\,\,x \ge 1
\end{array} \right.
\end{array}\]
KEY CONCEPT
A continuous function $$f\left( x \right)$$ is not differentiable at $$x= a$$
If graphically it takes a sharp turn at $$x=a.$$
Graph of $$f\left( x \right) = \max \,\left\{ {x,\,{x^3}} \right\}$$ is as shown with solid lines.
From graph of $$f\left( x \right)$$ at $$x =-1, \,0, \,1,$$ we have sharp turns.
$$\therefore f\left( x \right)$$ is not differentiable at $$x =- 1, \,0, \,1.$$
27.
The number of points in $$\left( {1,\,3} \right)$$ where $$f\left( x \right) = {a^{\left[ {{x^2}} \right]}},\,a > 1,$$ is not differentiable, where $$\left[ x \right]$$ denotes the integral part of $$x.$$
A
5
B
7
C
9
D
11
Answer :
7
View Solution
Discuss Question
Here $$1 < x < 3$$ and in this interval $${x^2}$$ is an increasing functions, thus $$1 < {x^2} < 9$$
$$\eqalign{
& \left[ {{x^2}} \right] = 1,\,1 \leqslant x < \sqrt 2 \cr
& = 2,\,\sqrt 2 \leqslant x < \sqrt 3 \cr
& = 3,\,\sqrt 3 \leqslant x < 2 \cr
& = 4,\,2 \leqslant x < \sqrt 5 \cr
& = 5,\,\sqrt 5 \leqslant x < \sqrt 6 \cr
& = 6,\,\sqrt 6 \leqslant x < \sqrt 7 \cr
& = 7,\,\sqrt 7 \leqslant x < \sqrt 8 \cr
& = 8,\,\sqrt 8 \leqslant x < 3 \cr} $$
Clearly, $$\left[ {{x^2}} \right]$$ and $${a^{\left[ {{x^2}} \right]}}$$ is discontinuous and not differentiable at only $$7$$ points, $$x = \sqrt 2 ,\,\sqrt 3 ,\,2,\,\sqrt 5 ,\,\sqrt 6 ,\,\sqrt 7 ,\,\sqrt 8 $$
28.
Which one of the following statements is correct in respect of the function $$f\left( x \right) = {x^3}\sin \,x\,?$$
A
$$f'\left( x \right)$$ changes sign from positive to negative at $$x = 0$$
B
$$f'\left( x \right)$$ changes sign from positive to negative to positive at $$x = 0$$
C
does not change sign at $$x = 0$$
D
$$f''\left( 0 \right) \ne 0$$
Answer :
does not change sign at $$x = 0$$
View Solution
Discuss Question
$$\eqalign{
& f\left( x \right) = {x^3}\sin \,x \cr
& f'\left( x \right) = 3{x^2}\sin \,x + {x^3}\cos \,x \cr
& f'\left( x \right) = 0 \cr
& \Rightarrow 3{x^2}\sin \,x + {x^3}\cos \,x = 0 \cr
& \Rightarrow {x^2}\left( {3\,\sin \,x + x\,\cos \,x} \right) = 0 \cr
& \Rightarrow x = 0,\,3\,\sin \,x + x\,\cos \,x = 0.....(1) \cr
& {\text{Put }}x = 0,{\text{ in equation }}(1) \cr
& 3\,\sin \,x = 0\,\,\, \Rightarrow \sin \,x = 0 \cr
& f''\left( x \right) = 6x\,\sin \,x + 3{x^2}\cos \,x + 3{x^2}\cos \,x + {x^3}\left( { - \sin \,x} \right) \cr
& f''\left( 0 \right) = 0 \cr} $$
29.
Consider the following in respect of the function \[f\left( x \right) = \left\{ \begin{array}{l}
2 + x,\,\,\,\,\,x \ge 0\\
2 - x,\,\,\,\,\,x < 0
\end{array} \right.\]
$$\eqalign{
& 1.\,\,\mathop {\lim }\limits_{x \to 1} f\left( x \right)\,{\text{does not exist}} \cr
& 2.{\text{ }}\,f\left( x \right)\,{\text{is differentiable at }}x = 0 \cr
& 3.{\text{ }}\,f\left( x \right)\,{\text{is continuous at }}x = 0 \cr} $$
Which of the above statements is/are correct ?
A
1 only
B
3 only
C
2 and 3 only
D
1 and 3 only
Answer :
1 and 3 only
View Solution
Discuss Question
$$\eqalign{
& {\text{For}}\,x \geqslant 0 \cr
& \mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} 2 + x = 2 + 1 = 3 \cr
& {\text{For}}\,x < 0 \cr
& \mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} 2 - x = 2 - 1 = 1 \cr
& {\text{So, }}\mathop {\lim }\limits_{x \to 1} f\left( x \right){\text{ does not exist}} \cr
& {\text{At }}x = 0 \cr
& {\text{R}}{\text{.H}}{\text{.L}}{\text{. :}}\mathop {\lim }\limits_{h \to {0^ + }} f\left( {0 + h} \right) = \mathop {\lim }\limits_{h \to 0} 2 + h = 2 \cr
& {\text{L}}{\text{.H}}{\text{.L}}{\text{. :}}\mathop {\lim }\limits_{h \to {0^ - }} f\left( {0 - h} \right) = \mathop {\lim }\limits_{h \to 0} 2 - h = 2 \cr
& f\left( 0 \right) = 2 + 0 = 2 \cr
& {\text{So, R}}{\text{.H}}{\text{.L}}{\text{.}} = {\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = f\left( 0 \right) \cr
& \Rightarrow \,f\left( x \right){\text{ is continuous at}}\,x = 0 \cr
& {\text{Differentiability at }}x = 0 \cr
& {\text{L}}{\text{.H}}{\text{.D}}{\text{. : }}\mathop {\lim }\limits_{h \to {0^ - }} \frac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} = \mathop {\lim }\limits_{h \to {0^ - }} \frac{{2 + h - 2}}{{ - h}} = \frac{{ - h}}{h} = - 1 \cr
& {\text{R}}{\text{.H}}{\text{.D}}{\text{. : }}\mathop {\lim }\limits_{h \to {0^ + }} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} = \mathop {\lim }\limits_{h \to {0^ + }} \frac{{2 + h - 2}}{h} = 1 \cr
& {\text{Since, L}}{\text{.H}}{\text{.D}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} \cr
& {\text{So, }}f\left( x \right){\text{ is not differentiable at }}x = 0. \cr} $$
30.
If $$u = f\left( {{x^3}} \right),\,v = g\left( {{x^2}} \right),\,f'\left( x \right) = \cos \,x$$ and $$g'\left( x \right) = \sin \,x,$$ then $$\frac{{du}}{{dv}} = ?$$
A
$$\frac{1}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$
B
$$\frac{3}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$
C
$$\frac{1}{2}x\,\sec \,{x^3}{\text{sin }}{x^2}$$
D
$$\frac{3}{2}x\,\sec \,{x^3}{\text{cosec }}{x^2}$$
Answer :
$$\frac{3}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Here, }}u = f\left( {{x^3}} \right) \cr
& \Rightarrow \frac{{du}}{{dx}} = f'\left( {{x^3}} \right).\frac{d}{{dx}}\left( {{x^3}} \right) \cr
& = \left( {\cos \left( {{x^3}} \right)} \right).3{x^2} \cr
& = 3{x^2}.\cos \,{x^3} \cr
& {\text{and }}v = g\left( {{x^2}} \right) \cr
& \Rightarrow \frac{{dv}}{{dx}} = g'\left( {{x^2}} \right).\frac{d}{{dx}}\left( {{x^2}} \right) \cr
& = \left( {\sin \,{x^2}} \right).\left( {2x} \right) \cr
& = 2x.\sin \,{x^2} \cr
& \therefore \,\frac{{du}}{{dv}} = \frac{{\frac{{du}}{{dx}}}}{{\frac{{dv}}{{dx}}}}\frac{{3{x^2}.\cos \,{x^3}}}{{2x.\sin \,{x^2}}} \cr
& \Rightarrow \frac{{du}}{{dv}} = \frac{3}{2}x.\cos \,{x^3}.{\text{cosec}}\,{x^2} \cr} $$