131.
Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$ then:
A
$$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$ does not exist
B
$$f\left( x \right)$$ is continuous at $$x = 0$$
C
$$f\left( x \right)$$ is not differentiable at $$x =0$$
D
$$f'\left( 0 \right) = 1$$
Answer :
$$f\left( x \right)$$ is continuous at $$x = 0$$
View Solution
Discuss Question
We have $$f\left( x \right) = \left[ {{{\tan }^2}x} \right]$$
$$\tan \,x$$ is an increasing function for $$ - \frac{\pi }{4} < x < \frac{\pi }{4}$$
$$\eqalign{
& \therefore \,\tan \left( { - \frac{\pi }{4}} \right) < \tan \,x < \tan \left( {\frac{\pi }{4}} \right) \cr
& \Rightarrow - 1 < \tan \,x < 1 \cr
& \Rightarrow 0 < {\tan ^2}x < 1 \cr
& \Rightarrow \left[ {{{\tan }^2}x} \right] = 0 \cr
& {\text{Hence, }}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left[ {{{\tan }^2}x} \right] = 0 \cr
& {\text{Also }}f\left( 0 \right) = 0 \cr
& \therefore f\left( x \right)\,\,{\text{is continuous at}}\,x = 0 \cr} $$
132.
Given $$f:\left[ { - 2a,\,2a} \right] \to R$$ is an odd function such that the left hand derivative at $$x = a$$ is zero and $$f\left( x \right) = f\left( {2a - x} \right)\forall \,x\, \in \left( {a,\,2a} \right),$$ then its left had derivative at $$x = - a$$ is :
A
$$0$$
B
$$a$$
C
$$ - a$$
D
does not exist
Answer :
$$0$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given, }}f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a - h} \right) - f\left( a \right)}}{{ - h}} = 0.....\left( 1 \right) \cr
& {\text{Now, }}f'\left( { - {a^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( { - a - h} \right) - f\left( { - a} \right)}}{{ - h}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{ - f\left( {a + h} \right) + f\left( a \right)}}{{ - h}}\,\,\,\,\,\left[ {\because \,f\left( x \right)\,{\text{is odd function}}} \right] \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{ - f\left( {a - h} \right) + f\left( a \right)}}{{ - h}}\,\,\,\,\left[ {\because \,f\left( {2a - x} \right) = f\left( x \right) \Rightarrow f\left( {a + x} \right) = f\left( {a - x} \right)} \right] \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a - h} \right) - f\left( a \right)}}{h} \cr
& = 0\,\,\,\,\,\,\left[ {{\text{From }}\left( 1 \right)} \right] \cr} $$
133.
Let $$f:R \to R$$ be defined as $$f\left( x \right) = \sin (\left| x \right|)$$
Which one of the following is correct ?
A
$$f$$ is not differentiable only at 0
B
$$f$$ is differentiable at 0 only
C
$$f$$ is differentiable everywhere
D
$$f$$ is non-differentiable at many points
Answer :
$$f$$ is not differentiable only at 0
View Solution
Discuss Question
Given function is :
\[f\left( x \right) = \sin \left| x \right| = \left\{ \begin{array}{l}
\sin \left( x \right),\,\,\,\,\,\,\,x \ge 0\\
\sin \left( { - x} \right),\,\,\,x < 0
\end{array} \right. = \left\{ \begin{array}{l}
\,\,\,\,\sin \,x,\,\,\,\,\,x \ge 0\\
- \sin \,x,\,\,\,\,x < 0
\end{array} \right.\]
$$\eqalign{
& {\text{L}}{\text{.H}}{\text{.D}}{\text{. at}}\,x = 0 = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{0 - h - 0}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{ - \sin \left( { - h} \right) - 0}}{{ - h}} \cr
& = - 1 \cr
& {\text{R}}{\text{.H}}{\text{.D}}{\text{. at}}\,x = 0 = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( x \right)}}{{0 + h - 0}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {h - 0} \right)}}{h} \cr
& = 1 \cr
& {\text{L}}{\text{.H}}{\text{.D}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} \cr} $$
$$f\left( x \right)$$ is not differentiable at $$x = 0.$$
134.
Let $$f\left( x \right) = \log \left| {x - 1} \right|,\,x \ne 1.$$ The value of $$f'\left( {\frac{1}{2}} \right) = ?$$
A
is $$ - 2$$
B
is $$2$$
C
does not exist
D
none of these
Answer :
is $$ - 2$$
View Solution
Discuss Question
$$\eqalign{
& {\text{RH derivative}} = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left| {\frac{1}{2} + h - 1} \right| - \log \left| {\frac{1}{2} - 1} \right|}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left| {h - \frac{1}{2}} \right| - \log \frac{1}{2}}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left( {\frac{1}{2} - h} \right) + \log \,2}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{\frac{1}{2} - h}}\left( { - 1} \right) + 0}}{1} \cr
& = - 2 \cr
& {\text{LH derivative}} = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left| {\frac{1}{2} - h - 1} \right| - \log \left| {\frac{1}{2} - 1} \right|}}{{ - h}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left( {\frac{1}{2} + h} \right) - \log \frac{1}{2}}}{{ - h}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{\frac{1}{2} + h}} - 0}}{{ - 1}} \cr
& = - 2 \cr
& {\bf{Alternate\,method :}} \cr
& {\text{Around}}\,\,x = \frac{1}{2},\,f\left( x \right) = \log \left( {1 - x} \right) \cr
& {\text{So, }}f'\left( x \right) = \frac{{ - 1}}{{1 - x}} \cr
& \therefore f'\left( {\frac{1}{2}} \right) = \frac{{ - 1}}{{1 - \frac{1}{2}}} = - 2 \cr} $$
135.
What is the derivative of $${x^3}$$ with respect to $${x^2}\,?$$
A
$$3{x^2}$$
B
$$\frac{{3x}}{2}$$
C
$$x$$
D
$$\frac{3}{2}$$
Answer :
$$\frac{{3x}}{2}$$
View Solution
Discuss Question
$$\eqalign{
& U = {x^3} \cr
& \frac{{dU}}{{dx}} = 3{x^2}......(1) \cr
& V = {x^2} \cr
& \frac{{dV}}{{dx}} = 2x......(2) \cr
& {\text{From }}(1){\text{ and }}(2) \cr
& \frac{{dU}}{{dV}} = \frac{{3{x^2}}}{{2x}} = \frac{3}{2}x \cr} $$
136.
If $$f''\left( x \right) < 0,\forall \,x\, \in \left( {a,\,b} \right),$$ then $$f'\left( x \right) = 0$$ occurs :
A
exactly once in $$\left( {a,\,b} \right)$$
B
at most once in $$\left( {a,\,b} \right)$$
C
at least once in $$\left( {a,\,b} \right)$$
D
none of these
Answer :
at most once in $$\left( {a,\,b} \right)$$
View Solution
Discuss Question
Suppose, there are two points $${x_1}$$ and $${x_2}$$ in $$\left( {a,\,b} \right)$$ such that $$f'\left( {{x_1}} \right) = f'\left( {{x_2}} \right) = 0.$$ By Rolle's theorem applied to $$f'$$ on $$\left[ {{x_1},\,{x_2}} \right],$$ there must be a $$c\, \in \,\left( {{x_1},\,{x_2}} \right)$$ such that $$f''\left( c \right) = 0.$$ This contradicts the given condition $$f''\left( x \right) < 0,\forall \,x\, \in \left( {a,\,b} \right).$$
Hence, our assumption is wrong. Therefore, there can be at most one point in $$\left( {a,\,b} \right)$$ at which $$f'\left( x \right)$$ is zero.