61. Let $$f$$ be a function which is continuous and differentiable for all real $$x.$$ If $$f\left( 2 \right) = - 4$$   and $$f'\left( x \right) \geqslant 6$$   for all $$x\, \in \left[ {2,\,4} \right],$$   then,

A $$f\left( 4 \right) < 8$$
B $$f\left( 4 \right) \geqslant 8$$
C $$f\left( 4 \right) \geqslant 12$$
D none of these
Answer :   $$f\left( 4 \right) \geqslant 8$$
Discuss Question

62. The function $$f:\frac{R}{{\left\{ 0 \right\}}} \to R$$    given by $$f\left( x \right) = \frac{1}{x} - \frac{2}{{{e^{2x}} - 1}}$$    can be made continuous at $$x = 0$$   by defining $$f\left( 0 \right)$$  as-

A $$0$$
B $$1$$
C $$2$$
D $$-1$$
Answer :   $$1$$
Discuss Question

63. \[{\rm{If\, }}f\left( x \right) = \left\{ \begin{array}{l} p{x^2} - q,\,x \in \left[ {0,\,1} \right)\\ x + 1,\,x\, \in \left( {1,\,2} \right] \end{array} \right.\]
and $$f\left( 1 \right) = 2$$   then the value of the pair $$\left( {p,\,q} \right)$$  for which $$f\left( x \right)$$  cannot be continuous at $$x=1$$  is :

A $$\left( {2,\,0} \right)$$
B $$\left( {1,\, - 1} \right)$$
C $$\left( {4,\,2} \right)$$
D $$\left( {1,\,1} \right)$$
Answer :   $$\left( {1,\,1} \right)$$
Discuss Question

64. The function $$f\left( x \right) = \sin \left( {{{\log }_e}\left| x \right|} \right),\,x \ne 0,$$      and $$1$$ is $$x = 0$$

A is continuous at $$x = 0$$
B has removable discontinuity at $$x = 0$$
C has jump discontinuity at $$x = 0$$
D has oscillating discontinuity at $$x = 0$$
Answer :   has oscillating discontinuity at $$x = 0$$
Discuss Question

65. Let $$f\left( x \right) = \frac{{{{\left( {{e^x} - 1} \right)}^2}}}{{\sin \left( {\frac{x}{a}} \right)\log \left( {1 + \frac{x}{4}} \right)}}$$      for $$x \ne 0,$$  and $$f\left( 0 \right) = 12.$$   If $$f$$ is continuous at $$x = 0,$$  then the value of $$a$$ is equal to :

A $$1$$
B $$ - 1$$
C $$2$$
D $$3$$
Answer :   $$3$$
Discuss Question

66. Let $$f$$ be a continuous function on $$R$$ such that $$f\left( {\frac{1}{{4n}}} \right) = \left( {\sin \,{e^n}} \right){e^{ - {n^2}}} + \frac{{{n^2}}}{{{n^2} + 1}}.$$
Then the value of $$f\left( 0 \right)$$  is :

A $$1$$
B $$\frac{1}{2}$$
C $$0$$
D none of these
Answer :   $$1$$
Discuss Question

67. If $$f\left( {xy} \right) = f\left( x \right).\,f\left( y \right)$$     for all $$x,\,y$$  and $$f\left( x \right)$$  is continuous at $$x = 2$$  then $$f\left( x \right)$$  is not necessarily continuous in :

A $$\left( { - \infty ,\,\infty } \right)$$
B $$\left( {0,\,\infty } \right)$$
C $$\left( { - \infty ,\,0} \right)$$
D $$\left( {2,\,\infty } \right)$$
Answer :   $$\left( { - \infty ,\,\infty } \right)$$
Discuss Question

68. If function \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,x,\,\,\,\,\,\,\,\,\,{\rm{if\,\, }}x{\rm{ \,\,is\,\, rational}}\\ 1 - x,\,\,{\rm{if \,\,}}x{\rm{ \,\,is\,\, irrational}} \end{array} \right.,\]       then the number of points at which $$f\left( x \right)$$  is continuous, is -

A $$\infty $$
B $$1$$
C $$0$$
D None of these
Answer :   $$1$$
Discuss Question


Practice More MCQ Question on Maths Section