61.
Let $$f$$ be a function which is continuous and differentiable for all real $$x.$$ If $$f\left( 2 \right) = - 4$$ and $$f'\left( x \right) \geqslant 6$$ for all $$x\, \in \left[ {2,\,4} \right],$$ then,
By mean value theorem, there exists a real number $$c\, \in \left( {2,\,4} \right)$$ such that
$$\eqalign{
& f'\left( c \right) = \frac{{f\left( 4 \right) - f\left( 2 \right)}}{{4 - 2}}\,\,\, \Rightarrow f'\left( c \right) = \frac{{f\left( 4 \right) + 4}}{2} \cr
& {\text{Since, }}f'\left( c \right) \geqslant 6,\,\forall \,x\, \in \left[ {2,\,4} \right] \cr
& \therefore \,f'\left( c \right) \geqslant 6 \cr
& \Rightarrow \frac{{f\left( 4 \right) + 4}}{2} \geqslant 6 \cr
& \Rightarrow f\left( 4 \right) + 4 \geqslant 12 \cr
& \Rightarrow f\left( 4 \right) \geqslant 8 \cr} $$
62.
The function $$f:\frac{R}{{\left\{ 0 \right\}}} \to R$$ given by
$$f\left( x \right) = \frac{1}{x} - \frac{2}{{{e^{2x}} - 1}}$$ can be made continuous at $$x = 0$$ by defining $$f\left( 0 \right)$$ as-
63.
\[{\rm{If\, }}f\left( x \right) = \left\{ \begin{array}{l}
p{x^2} - q,\,x \in \left[ {0,\,1} \right)\\
x + 1,\,x\, \in \left( {1,\,2} \right]
\end{array} \right.\]
and $$f\left( 1 \right) = 2$$ then the value of the pair $$\left( {p,\,q} \right)$$ for which $$f\left( x \right)$$ cannot be continuous at $$x=1$$ is :
We have $$\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)$$
$$ = \mathop {\lim }\limits_{h \to 0} \sin \left( {{{\log }_e}\left| { - h} \right|} \right)$$
$$ = \mathop {\lim }\limits_{h \to 0} \sin \left( {{{\log }_e}h} \right)$$ which does not but lies between $$-1$$ and $$1$$
Similarly, $$\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)$$ lies between $$-1$$ and $$1$$ but cannot be determined.
65.
Let $$f\left( x \right) = \frac{{{{\left( {{e^x} - 1} \right)}^2}}}{{\sin \left( {\frac{x}{a}} \right)\log \left( {1 + \frac{x}{4}} \right)}}$$ for $$x \ne 0,$$ and $$f\left( 0 \right) = 12.$$ If $$f$$ is continuous at $$x = 0,$$ then the value of $$a$$ is equal to :
66.
Let $$f$$ be a continuous function on $$R$$ such that $$f\left( {\frac{1}{{4n}}} \right) = \left( {\sin \,{e^n}} \right){e^{ - {n^2}}} + \frac{{{n^2}}}{{{n^2} + 1}}.$$
Then the value of $$f\left( 0 \right)$$ is :
67.
If $$f\left( {xy} \right) = f\left( x \right).\,f\left( y \right)$$ for all $$x,\,y$$ and $$f\left( x \right)$$ is continuous at $$x = 2$$ then $$f\left( x \right)$$ is not necessarily continuous in :
Given, $$f\left( {x\,y} \right) = f\left( x \right).\,f\left( y \right)$$ for all $$x,y$$ .....(1)
$$f\left( x \right)$$ is continuous at $$x = 2,$$ i.e., $$\mathop {{\text{Lt}}}\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)$$ .....(2)
$$\eqalign{
& {\text{Let }}a \ne 0 \cr
& {\text{Now, }}\mathop {{\text{Lt}}}\limits_{x \to a} f\left( x \right) = \mathop {{\text{Lt}}}\limits_{h \to 2} f\left( {\frac{{ah}}{2}} \right) \cr
& \left[ {{\text{putting }}x = \frac{{ah}}{2}{\text{ so that }}h = \frac{{2x}}{a}} \right] \cr
& = f\left( {\frac{a}{2}} \right)\mathop {{\text{Lt}}}\limits_{h \to 2} f\left( h \right) \cr
& = f\left( {\frac{a}{2}} \right).f\left( 2 \right) \cr
& = f\left( {\frac{a}{2}.2} \right) \cr
& = f\left( a \right) \cr} $$
Hence, $$f\left( x \right)$$ is necessarily continuous at $$x = a$$ for all $$a \ne 0.$$
At $$x = 0,\,f\left( x \right)$$ may or may not be continuous.
Hence, $$f\left( x \right)$$ is not necessarily continuous in $$\left( { - \infty ,\, + \infty } \right)$$
68.
If function \[f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,x,\,\,\,\,\,\,\,\,\,{\rm{if\,\, }}x{\rm{ \,\,is\,\, rational}}\\
1 - x,\,\,{\rm{if \,\,}}x{\rm{ \,\,is\,\, irrational}}
\end{array} \right.,\] then the number of points at which $$f\left( x \right)$$ is continuous, is -