51. A function $$f\left( x \right)$$  is defined as below
$$f\left( x \right) = \frac{{\cos \left( {\sin \,x} \right) - \cos \,x}}{{{x^2}}},\,x \ne 0{\text{ and }}f\left( 0 \right) = a$$
$$f\left( x \right)$$  is continuous at $$x=0$$  if $$a$$ equals :

A $$0$$
B $$4$$
C $$5$$
D 6
Answer :   $$0$$
Discuss Question

52. At $$x=0,$$  the function $$y = {e^{ - \left| x \right|}}$$   is :

A continuous
B continuous and differentiable
C differentiable with derivative $$=1$$
D differentiable with derivative $$=-1$$
Answer :   continuous
Discuss Question

53. Let $$f\left( x \right) = x - \left| {x - {x^2}} \right|,\,x\, \in \left[ { - 1,\,1} \right].$$       Then the number of points at which $$f\left( x \right)$$  is discontinuous is :

A 1
B 2
C 0
D none of these
Answer :   0
Discuss Question

54. If \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,mx + 1,\,\,\,\,\,\,\,x \le \frac{\pi }{2}\\ \sin \,x + n,\,\,\,\,\,x > \frac{\pi }{2} \end{array} \right.\]      is continuous at $$x = \frac{\pi }{2},$$   then which one of the following is correct ?

A $$m = 1,\,n = 0$$
B $$m = \frac{{n\pi }}{2} + 1$$
C $$n = m\left( {\frac{\pi }{2}} \right)$$
D $$m = n = \frac{\pi }{2}$$
Answer :   $$n = m\left( {\frac{\pi }{2}} \right)$$
Discuss Question

55. Let \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,{5^{\frac{1}{x}}},\,\,\,\,\,\,\,x < 0\\ \lambda \left[ x \right],\,\,\,\,x \ge 0 \end{array} \right.{\rm{ \,and\,\, }}\lambda \, \in \,R\]         then at $$x = 0$$

A $$f$$ is discontinuous
B $$f$$ is continuous only, $$\lambda = 0$$
C $$f$$ is continuous only, whatever $$\lambda $$ may be
D none of these
Answer :   $$f$$ is discontinuous
Discuss Question

56. If \[f\left( x \right) = \left\{ \begin{array}{l} \left( {\frac{{{x^2}}}{a}} \right) - a,\,\,\,\,\,{\rm{when\,\, }}x < a\\ \,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{when\,\, }}x = a\\ a - \left( {\frac{{{x^2}}}{a}} \right),\,\,\,\,{\rm{when\,\, }}x > a \end{array} \right.\]        ,then :

A $$\mathop {\lim }\limits_{x \to a} f\left( x \right) = a$$
B $$f\left( x \right)$$  is continuous at $$x = a$$
C $$f\left( x \right)$$  is discontinuous at $$x = a$$
D none of these
Answer :   $$f\left( x \right)$$  is continuous at $$x = a$$
Discuss Question

57. If $$f\left( x \right) = {\left( {x + 1} \right)^{\cot \,x}}$$    is continuous at $$x = 0,$$  then what is $$f\left( 0 \right)$$  equal to ?

A $$1$$
B $$e$$
C $$\frac{1}{e}$$
D $${e^2}$$
Answer :   $$e$$
Discuss Question

58. Let $$f:\left[ {0,\,1} \right] \to \left[ {0,\,1} \right]$$     be a continuous function. Then :

A $$f\left( x \right) = x$$   for at least one $$0 \leqslant x \leqslant 1$$
B $$f\left( x \right)$$  will be differentiable in $$\left[ {0,\,1} \right]$$
C $$f\left( x \right) + x = 0$$    for at least one $$x$$ such that $$0 \leqslant x \leqslant 1$$
D none of these
Answer :   $$f\left( x \right) = x$$   for at least one $$0 \leqslant x \leqslant 1$$
Discuss Question

59. The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A $$a-b$$
B $$a+b$$
C $$\ln a - \ln b$$
D none of these
Answer :   $$a+b$$
Discuss Question

60. Given $$f\left( x \right) = b\left( {{{\left[ x \right]}^2} + \left[ x \right]} \right) + 1$$     for $$x \geqslant - 1 = \sin \left( {\pi \left( {x + a} \right)} \right)$$     for $$x < - 1$$   where $$\left[ x \right]$$ denotes the integral part of $$x,$$ then for what values of $$a,\,b$$  the function is continuous at $$x = - 1\,?$$

A $$a = 2n + \left( {\frac{3}{2}} \right);\,b\, \in \,R;\,n\, \in \,I$$
B $$a = 4n + 2;\,b\, \in \,R;\,n\, \in \,I$$
C $$a = 4n + \left( {\frac{3}{2}} \right);\,b\, \in \,{R^{ + 1}};\,n\, \in \,I$$
D $$a = 4n + 1;\,b\, \in \,{R^ + };\,n\, \in \,I$$
Answer :   $$a = 2n + \left( {\frac{3}{2}} \right);\,b\, \in \,R;\,n\, \in \,I$$
Discuss Question


Practice More MCQ Question on Maths Section