51.
A function $$f\left( x \right)$$ is defined as below
$$f\left( x \right) = \frac{{\cos \left( {\sin \,x} \right) - \cos \,x}}{{{x^2}}},\,x \ne 0{\text{ and }}f\left( 0 \right) = a$$
$$f\left( x \right)$$ is continuous at $$x=0$$ if $$a$$ equals :
53.
Let $$f\left( x \right) = x - \left| {x - {x^2}} \right|,\,x\, \in \left[ { - 1,\,1} \right].$$ Then the number of points at which $$f\left( x \right)$$ is discontinuous is :
$$f\left( x \right) = x - \left| x \right|.\left| {1 - x} \right|.$$ We know that $$x,\,\left| x \right|,\,\left| {1 - x} \right|$$ are continuous everywhere. As the product and algebraic sum of continuous functions are continuous, $$f\left( x \right)$$ is continuous everywhere.
54.
If \[f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,mx + 1,\,\,\,\,\,\,\,x \le \frac{\pi }{2}\\
\sin \,x + n,\,\,\,\,\,x > \frac{\pi }{2}
\end{array} \right.\] is continuous at $$x = \frac{\pi }{2},$$ then which one of the following is correct ?
For a function to be continuous at a point the limit should be exist and should be equal to the value of the function at the point.
Here point is $$x = 0$$
$$\eqalign{
& {\text{and }}\mathop {\lim }\limits_{x \to 0} f\left( x \right) \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {x + 1} \right)^{\cot \,x}} \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\cot \,x}} \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}.x\,\cot \,x}} \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {x + 1} \right)^{\frac{1}{x}.\mathop {\lim }\limits_{x \to 0} \frac{x}{{\tan \,x}}}} \cr
& = {e^1} \cr
& = e \cr} $$
Since, limiting value of $$f\left( x \right) = e,$$ when $$x \to 0,\,f\left( 0 \right)$$ should also be equal to $$e.$$
58.
Let $$f:\left[ {0,\,1} \right] \to \left[ {0,\,1} \right]$$ be a continuous function. Then :
A
$$f\left( x \right) = x$$ for at least one $$0 \leqslant x \leqslant 1$$
B
$$f\left( x \right)$$ will be differentiable in $$\left[ {0,\,1} \right]$$
C
$$f\left( x \right) + x = 0$$ for at least one $$x$$ such that $$0 \leqslant x \leqslant 1$$
D
none of these
Answer :
$$f\left( x \right) = x$$ for at least one $$0 \leqslant x \leqslant 1$$
Clearly, $$0 \leqslant f\left( 0 \right) \leqslant 1$$ and $$0 \leqslant f\left( 1 \right) \leqslant 1.$$ As $$f\left( x \right)$$ is continuous, $$f\left( x \right)$$ attains all values between $$f\left( 0 \right)$$ to $$f\left( 1 \right),$$ and the graph will have no breaks. So, the graph will cut the line $$y=x$$ at one point $$x$$ at least where $$0 \leqslant x \leqslant 1.$$ So, $$f\left( x \right) = x$$ at that point.
59.
The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$ is not defined at $$x = 0.$$ The value which should be assigned to $$f$$ at $$x = 0,$$ so that it is continuous at $$x =0,$$ is-
For $$f\left( x \right)$$ to be continuous at $$x =0$$
$$\eqalign{
& f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} f\left( x \right) \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}\,\,\left[ {{\text{using}}\,\,\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1} \right] \cr
& = a + b \cr} $$
60.
Given $$f\left( x \right) = b\left( {{{\left[ x \right]}^2} + \left[ x \right]} \right) + 1$$ for $$x \geqslant - 1 = \sin \left( {\pi \left( {x + a} \right)} \right)$$ for $$x < - 1$$ where $$\left[ x \right]$$ denotes the integral part of $$x,$$ then for what values of $$a,\,b$$ the function is continuous at $$x = - 1\,?$$