41.
The function $$f\left( x \right) = \frac{{1 - \sin \,x + \cos \,x}}{{1 + \sin \,x + \cos \,x}}$$ is not defined at $$x = \pi .$$ The value of $$f\left( \pi \right),$$ so that $$f\left( x \right)$$ is continuous at $$x = \pi ,$$ is :
42.
Let $$f\left( x \right) = \left[ {{x^2}} \right] - {\left[ x \right]^2},$$ where $$\left[ \cdot \right]$$ denotes the greatest integer function. Then :
A
$$f\left( x \right)$$ is discontinuous for all integral values of $$x$$
B
$$f\left( x \right)$$ is discontinuous only at $$x=0,\,1$$
C
$$f\left( x \right)$$ is continuous only at $$x=1$$
D
none of these
Answer :
$$f\left( x \right)$$ is continuous only at $$x=1$$
43.
Which of the following function is continuous at for all value of $$x\,?$$
$$\eqalign{
& \left( {\text{i}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^3} - x} \right) \cr
& \left( {{\text{ii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {2\,\cos \,x - 1} \right) \cr
& \left( {{\text{iii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^2} - 2x + 3} \right) \cr} $$
$$\eqalign{
& \left( {\bf{i}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^3} - x} \right) \cr
& {\text{Here }}{x^3} - x = 0 \cr
& \Rightarrow x = 0,\, - 1,\,1 \cr
& {\text{Hence,}}\,f\left( x \right){\text{ is discontinuous at }}x = 0,\, - 1,\,1 \cr
& \left( {{\bf{ii}}} \right)\,\,{\text{If }}f\left( x \right) = \operatorname{sgn} \left( {2\,\cos \,x - 1} \right) \cr
& {\text{Here, }}2\,\cos \,x - 1 = 0 \cr
& \Rightarrow \,\cos \,x = \frac{1}{2} \cr
& \Rightarrow x = \,2n\pi + \left( {\frac{\pi }{3}} \right),\,n\, \in \,Z,\,{\text{where }}f\left( x \right){\text{ is discontinuous}}. \cr
& \left( {{\bf{iii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^2} - 2x + 3} \right) \cr
& {\text{Here,}}\,{x^2} - 2x + 3 > 0{\text{ for all }}x \cr
& {\text{Thus, }}f\left( x \right) = 1{\text{ for all }}x \cr
& {\text{Hence, continuous for all }}x. \cr} $$
44.
Which one of the following is correct in respect of the function $$f\left( x \right) = \frac{{{x^2}}}{{\left| x \right|}}$$ for $$x \ne 0$$ and $$f\left( 0 \right) = 0?$$
A
$$f\left( x \right)$$ is discontinuous every where
B
$$f\left( x \right)$$ is continuous every where
C
$$f\left( x \right)$$ is continuous at $$x = 0$$ only
D
$$f\left( x \right)$$ is discontinuous at $$x = 0$$ only
Answer :
$$f\left( x \right)$$ is continuous every where
46.
The function $$f\left( x \right) = \frac{{1 - \sin \,x + \cos \,x}}{{1 + \sin \,x + \cos \,x}}$$ is not defined at $$x = \pi .$$ The value of $$f\left( \pi \right)$$ so that $$f\left( x \right)$$ is continuous at $$x = \pi ,$$ is :
47.
Let \[f\left( x \right) = \left\{ \begin{array}{l}
3x - 4,\,\,\,\,\,0 \le x \le 2\\
2x + \ell ,\,\,\,\,\,\,2 < x \le 9
\end{array} \right.\]
If $$f$$ is continuous at $$x = 2,$$ then what is the value of $$\ell \,?$$
Given function is : \[f\left( x \right) = \left\{ \begin{array}{l}
3x - 4,\,\,\,\,\,0 \le x \le 2\\
2x + \ell ,\,\,\,\,\,\,2 < x \le 9
\end{array} \right.\] and also given that $$f\left( x \right)$$ is continuous at $$x = 2$$
For a function to be continuous at a point $${\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = {\text{V}}{\text{.F}}{\text{.}}$$ at that point. $$f\left( 2 \right) = 2 = {\text{V}}{\text{.F}}{\text{.}}$$
$$\eqalign{
& \Rightarrow {\text{R}}{\text{.H}}{\text{.L}}{\text{.}}\,:\,\mathop {\lim }\limits_{x \to 2} \left( {2x + \ell } \right) = 3\left( 2 \right) - 4 \cr
& \Rightarrow \mathop {\lim }\limits_{h \to 0} \left\{ {2\left( {2 + h} \right) + \ell } \right\} = 6 - 4 \cr
& \Rightarrow 4 + \ell = 2 \cr
& \Rightarrow \ell = - 2 \cr} $$
48.
If $$f\left( x \right) = {x^\alpha }\log \,x$$ and $$f\left( 0 \right) = 0,$$ then the value of $$\alpha $$ for which Rolle's theorem can be applied in $$\left[ {0,\,1} \right]$$ is :
For continuity at $$x = 0,\,\mathop {\lim }\limits_{h \to 0} \,\sin \frac{1}{{0 + h}} = \mathop {\lim }\limits_{h \to 0} \,\sin \frac{1}{{0 - h}} = f\left( 0 \right)$$
But $$\mathop {\lim }\limits_{h \to 0} \,\sin \frac{1}{{0 + h}} = \mathop {\lim }\limits_{h \to 0} $$
{ a number between 1 and $$-1$$ } $$ \ne a$$ definite number.
$$\therefore \,f\left( 0 \right)$$ cannot be a definite number.
50.
Let $$f\left( x \right) = {\left( {\sin \,x} \right)^{\frac{1}{{\pi - 2x}}}},\,x \ne \frac{\pi }{2}$$
If $$f\left( x \right)$$ is continuous at $$x = \frac{\pi }{2}$$ then $$f\left( {\frac{\pi }{2}} \right)$$ is :