41. The function $$f\left( x \right) = \frac{{1 - \sin \,x + \cos \,x}}{{1 + \sin \,x + \cos \,x}}$$      is not defined at $$x = \pi .$$  The value of $$f\left( \pi \right),$$  so that $$f\left( x \right)$$  is continuous at $$x = \pi ,$$  is :

A $$ - \frac{1}{2}$$
B $$\frac{1}{2}$$
C $$ - 1$$
D $$1$$
Answer :   $$ - 1$$
Discuss Question

42. Let $$f\left( x \right) = \left[ {{x^2}} \right] - {\left[ x \right]^2},$$    where $$\left[ \cdot \right]$$ denotes the greatest integer function. Then :

A $$f\left( x \right)$$  is discontinuous for all integral values of $$x$$
B $$f\left( x \right)$$  is discontinuous only at $$x=0,\,1$$
C $$f\left( x \right)$$  is continuous only at $$x=1$$
D none of these
Answer :   $$f\left( x \right)$$  is continuous only at $$x=1$$
Discuss Question

43. Which of the following function is continuous at for all value of $$x\,?$$
$$\eqalign{ & \left( {\text{i}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^3} - x} \right) \cr & \left( {{\text{ii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {2\,\cos \,x - 1} \right) \cr & \left( {{\text{iii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^2} - 2x + 3} \right) \cr} $$

A Only (i)
B Only (iii)
C Both (ii) and (iii)
D None of these
Answer :   Only (iii)
Discuss Question

44. Which one of the following is correct in respect of the function $$f\left( x \right) = \frac{{{x^2}}}{{\left| x \right|}}$$   for $$x \ne 0$$  and $$f\left( 0 \right) = 0?$$

A $$f\left( x \right)$$  is discontinuous every where
B $$f\left( x \right)$$  is continuous every where
C $$f\left( x \right)$$  is continuous at $$x = 0$$  only
D $$f\left( x \right)$$  is discontinuous at $$x = 0$$  only
Answer :   $$f\left( x \right)$$  is continuous every where
Discuss Question

45. Let \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{1 - \tan \,x}}{{4x - \pi }},\,x \ne \frac{\pi }{4}\,{\rm{and\, }}x\, \in \left[ {0,\,\frac{\pi }{2}} \right)\\ \lambda ,\,x = \frac{\pi }{4} \end{array} \right.\]
If $$f\left( x \right)$$  is continuous in $$\left[ {0,\,\frac{\pi }{2}} \right)$$  then $$\lambda $$ is :

A 1
B $$\frac{1}{2}$$
C $$ - \frac{1}{2}$$
D none of these
Answer :   $$ - \frac{1}{2}$$
Discuss Question

46. The function $$f\left( x \right) = \frac{{1 - \sin \,x + \cos \,x}}{{1 + \sin \,x + \cos \,x}}$$      is not defined at $$x = \pi .$$  The value of $$f\left( \pi \right)$$  so that $$f\left( x \right)$$  is continuous at $$x = \pi ,$$  is :

A $$ - \frac{1}{2}$$
B $$\frac{1}{2}$$
C $$ - 1$$
D $$1$$
Answer :   $$ - 1$$
Discuss Question

47. Let \[f\left( x \right) = \left\{ \begin{array}{l} 3x - 4,\,\,\,\,\,0 \le x \le 2\\ 2x + \ell ,\,\,\,\,\,\,2 < x \le 9 \end{array} \right.\]
If $$f$$ is continuous at $$x = 2,$$  then what is the value of $$\ell \,?$$

A $$0$$
B $$2$$
C $$ - 2$$
D $$ - 1$$
Answer :   $$ - 2$$
Discuss Question

48. If $$f\left( x \right) = {x^\alpha }\log \,x$$    and $$f\left( 0 \right) = 0,$$   then the value of $$\alpha $$ for which Rolle's theorem can be applied in $$\left[ {0,\,1} \right]$$  is :

A $$ - 2$$
B $$ - 1$$
C $$0$$
D $$\frac{1}{2}$$
Answer :   $$\frac{1}{2}$$
Discuss Question

49. Let $$f\left( x \right) = \sin \frac{1}{x},\,x \ne 0.$$     Then $$f\left( x \right)$$  can be continuous at $$x=0$$

A if $$f\left( 0 \right) = 1$$
B if $$f\left( 0 \right) = 0$$
C if $$f\left( 0 \right) = - 1$$
D for no value of $$f\left( 0 \right)$$
Answer :   for no value of $$f\left( 0 \right)$$
Discuss Question

50. Let $$f\left( x \right) = {\left( {\sin \,x} \right)^{\frac{1}{{\pi - 2x}}}},\,x \ne \frac{\pi }{2}$$
 If $$f\left( x \right)$$  is continuous at $$x = \frac{\pi }{2}$$  then $$f\left( {\frac{\pi }{2}} \right)$$  is :

A $$e$$
B 1
C 0
D none of these
Answer :   1
Discuss Question


Practice More MCQ Question on Maths Section