31. The value of $$p$$ for which the function \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \frac{x}{p}\log \left[ {1 + \frac{{{x^2}}}{3}} \right]}},\,\,\,x \ne 0\\ \,\,\,\,12{\left( {\log \,4} \right)^3},\,\,\,\,\,\,x = 0 \end{array} \right.\]        may be continuous at $$x = 0,$$  is :

A $$1$$
B $$2$$
C $$3$$
D none of these
Answer :   none of these
Discuss Question

32. For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A discontinuous at some $$x$$
B continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D $$f'\left( x \right)$$  exists for all $$x$$
Answer :   $$f'\left( x \right)$$  exists for all $$x$$
Discuss Question

33. What is $$\mathop {\lim }\limits_{x \to 0} \frac{{2\left( {1 - \cos \,x} \right)}}{{{x^2}}}$$    equal to ?

A $$0$$
B $$\frac{1}{2}$$
C $$\frac{1}{4}$$
D $$1$$
Answer :   $$1$$
Discuss Question

34. Which of the following function(s) has/have removable discontinuity at $$x = 1 \,?$$

A $$f\left( x \right) = \frac{1}{{{\text{ln}}\left| x \right|}}$$
B $$f\left( x \right) = \frac{1}{{{x^3} - 1}}$$
C $$f\left( x \right) = {2^{{2^{\frac{1}{{1 - x}}}}}}$$
D $$f\left( x \right) = \frac{{\sqrt {x + 1} - \sqrt {2x} }}{{{x^2} - x}}$$
Answer :   $$f\left( x \right) = \frac{{\sqrt {x + 1} - \sqrt {2x} }}{{{x^2} - x}}$$
Discuss Question

35. If the mean value theorem is $$f\left( b \right) - f\left( a \right) = \left( {b - a} \right)f'\left( c \right).$$      Then, for the function $${x^2} - 2x + 3$$   in $$\left[ {1,\,\frac{3}{2}} \right]$$  the value of $$c$$ is :

A $$\frac{6}{5}$$
B $$\frac{5}{4}$$
C $$\frac{4}{3}$$
D $$\frac{7}{6}$$
Answer :   $$\frac{5}{4}$$
Discuss Question

36. Let \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{1 - {{\sin }^3}x}}{{3\,{{\cos }^2}x}},\,\,\,\,\,\,\,x < \frac{\pi }{2}\\ \,\,\,\,\,\,\,p,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{\pi }{2}\\ \frac{{q\left( {1 - \sin \,x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}},\,\,x > \frac{\pi }{2} \end{array} \right.\]
If $$f\left( x \right)$$  is continuous at $$x = \frac{\pi }{2},\,\left( {p,\,q} \right) = ?$$

A $$\left( {1,\,4} \right)$$
B $$\left( {\frac{1}{2},\,2} \right)$$
C $$\left( {\frac{1}{2},\,4} \right)$$
D none of these
Answer :   $$\left( {\frac{1}{2},\,4} \right)$$
Discuss Question

37. The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A all integers
B all integers except 0 and 1
C all integers except 0
D all integers except 1
Answer :   all integers except 1
Discuss Question

38. Let $$f\left( x \right)$$  be a continuous function defined for $$1 \leqslant x \leqslant 3.$$   If $$f\left( x \right)$$  takes rational values for all $$x$$ and $$f\left( 2 \right) = 10$$   then the value of $$f\left( {1.5} \right)$$  is :

A 7.5
B 10
C 5
D none of these
Answer :   10
Discuss Question

39. Consider the function \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,\,\,\,\,\,ax - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\,\,\,\, - 2 < x < 1\\ \,\,\,\,\,\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\,\,\,\, - 1 \le x \le 1\\ a + 2{\left( {x - 1} \right)^2}\,\,\,\,\,\,\,{\rm{for}}\,\,\,\,\,\,\,\,\,1 < x < 2 \end{array} \right.\]
What is the value of a for which $$f\left( x \right)$$  is continuous at $$x = - 1$$   and $$x = 1?$$

A $$ - 1$$
B $$1$$
C $$0$$
D $$2$$
Answer :   $$ - 1$$
Discuss Question

40. \[{\rm{Let }}f\left( x \right) = \left\{ \begin{array}{l} \sqrt {1 + {x^2}} ,\,x < \sqrt 3 \\ \sqrt 3 x - 1,\,\sqrt 3 \le x < 4\\ \left[ x \right],\,4 \le x < 5\\ \left| {1 - x} \right|,\,x \ge 5 \end{array} \right.,\]     $$\eqalign{ & {\text{where}}\,\,\left[ x \right]{\text{ is the greatest integer }} \leqslant x \cr} $$
The number of points of discontinuity of $$f\left( x \right)$$  in $$R$$ is :

A 3
B 0
C infinite
D none of these
Answer :   none of these
Discuss Question


Practice More MCQ Question on Maths Section