21. If the function $$f\left( x \right) = \frac{{x\left( {x - 2} \right)}}{{{x^2} - 4}},\,x \ne \pm 2$$      is continuous at $$x = 2,$$  then what is $$f\left( 2 \right)$$  equal to ?

A $$0$$
B $$\frac{1}{2}$$
C $$1$$
D $$2$$
Answer :   $$\frac{1}{2}$$
Discuss Question

22. If $$f\left( x \right) = \cos \left[ {\frac{\pi }{x}} \right]\cos \left( {\frac{\pi }{2}\left( {x - 1} \right)} \right)\,;$$       where $$\left[ x \right]$$ is the greatest integer function of $$x,$$ then $$f\left( x \right)$$  is continuous at :

A $$x = 0$$
B $$x = 1,\,2$$
C $$x = 0,\,2,\,4$$
D none of these
Answer :   $$x = 1,\,2$$
Discuss Question

23. Which of the following functions have finite number of points of discontinuity ? (where [.] represents greatest integer functions)

A $$\tan \,x$$
B $$x\left[ x \right]$$
C $$\frac{{\left| x \right|}}{x}$$
D $$\sin \,\left[ {n\pi x} \right]$$
Answer :   $$\frac{{\left| x \right|}}{x}$$
Discuss Question

24. If $$f\left( x \right) = \frac{1}{{1 - x}},$$   then the points of discontinuity of the function $$f\left[ {f\left\{ {f\left( x \right)} \right\}} \right]$$   are :

A $$\left\{ {0,\, - 1} \right\}$$
B $$\left\{ {0,\,1} \right\}$$
C $$\left\{ {1,\, - 1} \right\}$$
D none of these
Answer :   $$\left\{ {0,\,1} \right\}$$
Discuss Question

25. Let $$\left[ x \right]$$ denote the greatest integer less than or equal to $$x.$$ Now $$g\left( x \right)$$  is defined as below :
\[g\left( x \right) = \left\{ \begin{array}{l} \left[ {f\left( x \right)} \right],\,x\, \in \left( {0,\,\frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{2},\,\pi } \right)\\ \,3,\,x = \frac{\pi }{2} \end{array} \right.\]
where $$f\left( x \right) = \frac{{2\left( {\sin \,x - {{\sin }^n}x} \right) + \left| {\sin \,x - {{\sin }^n}x} \right|}}{{2\left( {\sin \,x - {{\sin }^n}x} \right) - \left| {\sin \,x - {{\sin }^n}x} \right|}},\,n\, \in \,R.$$           Then :

A $$g\left( x \right)$$  is continuous and differentiable at $$x = \frac{\pi }{2}$$  when $$n > 1$$
B $$g\left( x \right)$$  is continuous and differentiable at $$x = \frac{\pi }{2}$$  when $$0 < n < 1$$
C $$g\left( x \right)$$  is continuous but not differentiable at $$x = \frac{\pi }{2}$$  when $$n > 1$$
D $$g\left( x \right)$$  is continuous but differentiable at $$x = \frac{\pi }{2}$$  when $$0 < n < 1$$
Answer :   $$g\left( x \right)$$  is continuous and differentiable at $$x = \frac{\pi }{2}$$  when $$n > 1$$
Discuss Question

26. Let $$f\left( x \right) = \left[ {\cos \,x + \sin \,x} \right],\,0 < x < 2\pi $$        where $$\left[ x \right]$$ denotes the greatest integer less than or equal to $$x.$$ The number of points of discontinuity of $$f\left( x \right)$$  is :

A 6
B 5
C 4
D 3
Answer :   4
Discuss Question

27. What is the value of $$k$$ for which the following function $$f\left( x \right)$$  is continuous for all $$x\,?$$
\[f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - 3x + 2}}{{{{\left( {x - 1} \right)}^2}}},{\rm{ for\,\, }}x \ne 1\\ \,\,\,\,\,\,\,\,k,\,\,\,\,\,\,\,\,{\rm{ for\,\, }}x = 1 \end{array} \right.\]

A $$3$$
B $$2$$
C $$1$$
D $$ - 1$$
Answer :   $$3$$
Discuss Question

28. A function $$f$$ is defined as follows $$f\left( x \right) = {x^p}\cos \left( {\frac{1}{x}} \right),\,x \ne 0\,f\left( 0 \right) = 0$$
What conditions should be imposed on $$p$$ so that $$f$$ may be continuous at $$x = 0\,? $$

A $$p = 0$$
B $$p > 0$$
C $$p < 0$$
D No value of $$p$$
Answer :   $$p > 0$$
Discuss Question

29. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,$$     where $$\left[ x \right]$$ denotes the greatest integer function, then $$f$$ is,

A continuous for every real $$x.$$
B discontinuous only at $$x = 0$$
C discontinuous only at non-zero integral values of $$x.$$
D continuous only at $$x = 0.$$
Answer :   continuous for every real $$x.$$
Discuss Question

30. If $$y = \frac{1}{{{t^2} + t - 2}}$$    where $$t = \frac{1}{{x - 1}},$$   then find the number of points of discontinuities of $$y = f\left( x \right),$$

A 1
B 2
C 3
D 4
Answer :   3
Discuss Question


Practice More MCQ Question on Maths Section