21.
If the function $$f\left( x \right) = \frac{{x\left( {x - 2} \right)}}{{{x^2} - 4}},\,x \ne \pm 2$$ is continuous at $$x = 2,$$ then what is $$f\left( 2 \right)$$ equal to ?
22.
If $$f\left( x \right) = \cos \left[ {\frac{\pi }{x}} \right]\cos \left( {\frac{\pi }{2}\left( {x - 1} \right)} \right)\,;$$ where $$\left[ x \right]$$ is the greatest integer function of $$x,$$ then $$f\left( x \right)$$ is continuous at :
$$f\left( x \right) = \tan \,x$$ is discontinuous when $$x = \left( {2n + 1} \right)\frac{\pi }{2},\,n\, \in \,I$$
$$f\left( x \right) = x\left[ x \right]$$ is discontinuous when $$x = k,\,k\, \in \,I$$
$$f\left( x \right) = \sin \,\left[ {n\pi x} \right]$$ is discontinuous when $$n\pi x = k,\,k\, \in \,I$$
Thus, all the above functions have infinite number of points of discontinuity.
But $$f\left( x \right) = \frac{{\left| x \right|}}{x}$$ is discontinuous when $$x = 0$$ only.
24.
If $$f\left( x \right) = \frac{1}{{1 - x}},$$ then the points of discontinuity of the function $$f\left[ {f\left\{ {f\left( x \right)} \right\}} \right]$$ are :
We have, $$f\left( x \right) = \frac{1}{{1 - x}}$$
As at $$x = 1,\,f\left( x \right)$$ is not defined, $$x = 1$$ is a point of discontinuity of $$f\left( x \right).$$
If $$x \ne 1,\,f\left[ {f\left( x \right)} \right] = f\left( {\frac{1}{{1 - x}}} \right) = \frac{1}{{1 - \frac{1}{{\left( {1 - x} \right)}}}} = \frac{{x - 1}}{x}$$
$$\therefore \,x = 0,\,1$$ are points of discontinuity of $$f\left[ {f\left( x \right)} \right].$$
If $$x \ne 0,\,x \ne 1$$
$$f\left[ {f\left\{ {f\left( x \right)} \right\}} \right] = f\left( {\frac{{x - 1}}{x}} \right) = \frac{1}{{1 - \frac{{\left( {x - 1} \right)}}{x}}} = x$$
25.
Let $$\left[ x \right]$$ denote the greatest integer less than or equal to $$x.$$ Now $$g\left( x \right)$$ is defined as below :
\[g\left( x \right) = \left\{ \begin{array}{l}
\left[ {f\left( x \right)} \right],\,x\, \in \left( {0,\,\frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{2},\,\pi } \right)\\
\,3,\,x = \frac{\pi }{2}
\end{array} \right.\]
where $$f\left( x \right) = \frac{{2\left( {\sin \,x - {{\sin }^n}x} \right) + \left| {\sin \,x - {{\sin }^n}x} \right|}}{{2\left( {\sin \,x - {{\sin }^n}x} \right) - \left| {\sin \,x - {{\sin }^n}x} \right|}},\,n\, \in \,R.$$ Then :
A
$$g\left( x \right)$$ is continuous and differentiable at $$x = \frac{\pi }{2}$$ when $$n > 1$$
B
$$g\left( x \right)$$ is continuous and differentiable at $$x = \frac{\pi }{2}$$ when $$0 < n < 1$$
C
$$g\left( x \right)$$ is continuous but not differentiable at $$x = \frac{\pi }{2}$$ when $$n > 1$$
D
$$g\left( x \right)$$ is continuous but differentiable at $$x = \frac{\pi }{2}$$ when $$0 < n < 1$$
Answer :
$$g\left( x \right)$$ is continuous and differentiable at $$x = \frac{\pi }{2}$$ when $$n > 1$$
$$\eqalign{
& {\text{If }}n > 1,\,\sin \,x > {\sin ^n}x.{\text{ If }}0 < n < 1,\,\sin \,x < {\sin ^n}x\, \cr
& \therefore {\text{ if }}n > 1,\,f\left( x \right) = \frac{{2\left( {\sin \,x - {{\sin }^n}x} \right) + \left| {\sin \,x - {{\sin }^n}x} \right|}}{{2\left( {\sin \,x - {{\sin }^n}x} \right) - \left| {\sin \,x - {{\sin }^n}x} \right|}} = 3 \cr
& {\text{If }}0 < n < 1,\,f\left( x \right) = \frac{{2\left( {\sin \,x - {{\sin }^n}x} \right) - \left| {\sin \,x - {{\sin }^n}x} \right|}}{{2\left( {\sin \,x - {{\sin }^n}x} \right) + \left| {\sin \,x - {{\sin }^n}x} \right|}} = \frac{1}{3} \cr
& \therefore {\text{ if }}n > 1,\,g\left( x \right) = 3,\,x\, \in \left( {0,\,\pi } \right)\, \cr} $$
$$\therefore \,g\left( x \right)$$ is continuous and differentiable at $$x = \frac{\pi }{2}$$
$$\eqalign{
& {\text{If }}\,0 < n < 1,\,g\left( x \right) = 0\,x\, \in \left( {0,\,\frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{2},\,\pi } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3,\,x = \frac{\pi }{2} \cr} $$
Then $$g\left( {\frac{\pi }{2} + 0} \right) = 0,\,\,g\left( {\frac{\pi }{2} - 0} \right) = 0,\,\,g\left( {\frac{\pi }{2}} \right) = 3$$
So, $$g\left( x \right)$$ is not continuous at $$x = \frac{\pi }{2}$$
Hence, $$g\left( x \right)$$ is also not differentiable at $$x = \frac{\pi }{2}.$$
26.
Let $$f\left( x \right) = \left[ {\cos \,x + \sin \,x} \right],\,0 < x < 2\pi $$ where $$\left[ x \right]$$ denotes the greatest integer less than or equal to $$x.$$ The number of points of discontinuity of $$f\left( x \right)$$ is :
$$\eqalign{
& \cos \,x + \sin \,x = \sqrt 2 \,\cos \,\left( {x - \frac{\pi }{4}} \right) \cr
& {\text{So, }}f\left( x \right) = \left[ {\sqrt 2 \,\cos \left( {x - \frac{\pi }{4}} \right)} \right] \cr} $$
We know that $$\left[ x \right]$$ is discontinuous at integral values of $$x.$$
Now, $${\sqrt 2 \,\cos \left( {x - \frac{\pi }{4}} \right)}$$ is an integer at $$x = \frac{\pi }{2},\,\frac{\pi }{2} + \frac{\pi }{4},\,\pi + \frac{\pi }{4},\,\frac{{3\pi }}{2} + \frac{\pi }{4}$$
27.
What is the value of $$k$$ for which the following function $$f\left( x \right)$$ is continuous for all $$x\,?$$
\[f\left( x \right) = \left\{ \begin{array}{l}
\frac{{{x^3} - 3x + 2}}{{{{\left( {x - 1} \right)}^2}}},{\rm{ for\,\, }}x \ne 1\\
\,\,\,\,\,\,\,\,k,\,\,\,\,\,\,\,\,{\rm{ for\,\, }}x = 1
\end{array} \right.\]
28.
A function $$f$$ is defined as follows $$f\left( x \right) = {x^p}\cos \left( {\frac{1}{x}} \right),\,x \ne 0\,f\left( 0 \right) = 0$$
What conditions should be imposed on $$p$$ so that $$f$$ may be continuous at $$x = 0\,? $$
Given function is defined as : \[f\left( x \right) = \left\{ \begin{array}{l}
{x^p}\cos \left( {\frac{1}{x}} \right),\,\,\,x \ne 0\\
\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0
\end{array} \right.\]
For continuity :
$$\eqalign{
& {\text{L}}{\text{.H}}{\text{.S}}{\text{.}}:\mathop {\lim }\limits_{x \to 0} f\left( x \right) = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \cr
& \Rightarrow \mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} {x^p}\cos \left( {\frac{1}{x}} \right) = 0 \cr
& \Rightarrow \mathop {\lim }\limits_{x \to 0} {x^p}\cos \left( {\frac{1}{x}} \right) = 0 \cr} $$
$$\cos \left( {\frac{1}{x}} \right)$$ is always a finite quantity if $$x \to 0$$
$$ \Rightarrow {x^p} = 0$$
which is possible only if $$p > 0.$$
29.
If $$f:R \to R$$ is a function defined by $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,$$ where $$\left[ x \right]$$ denotes the greatest integer function, then $$f$$ is,
A
continuous for every real $$x.$$
B
discontinuous only at $$x = 0$$
C
discontinuous only at non-zero integral values of $$x.$$
$${\text{Let }}f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi $$
Doubtful points are $$x = n,\,\,n \in I$$
$$\eqalign{
& {\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = \mathop {\lim }\limits_{x \to {n^ - }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {n - 1} \right)\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr} $$
($$\because \,\left[ x \right]$$ is the greatest integer function)
$$\eqalign{
& {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = \mathop {\lim }\limits_{x \to {n^ + }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = n\,\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr} $$
Now, value of the function at $$x=n$$ is $$f\left( n \right) = 0$$
Since, L.H.L. $$=$$ R.H.L. $$ = f\left( n \right)$$
$$\therefore f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)$$ is continuous for every real $$x.$$
30.
If $$y = \frac{1}{{{t^2} + t - 2}}$$ where $$t = \frac{1}{{x - 1}},$$ then find the number of points of discontinuities of $$y = f\left( x \right),$$
$$t = \frac{1}{{x - 1}}$$ is discontinuous at $$x = 1$$
Also $$y = \frac{1}{{{t^2} + t - 2}}$$ is discontinuous at $$t = - 2$$ and $$t = 1$$
When $$t = - 2,\,\frac{1}{{x - 1}} = - 2 \Rightarrow x = \frac{1}{2}$$
When $$t = 1,\,\frac{1}{{x - 1}} \Rightarrow x = 2$$
So, $$y = f\left( x \right)$$ is discontinuous at three points $$x = 1,\,\frac{1}{2},\,2$$