11. If the function \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{k\,\cos \,x}}{{\pi - 2x}},\,{\rm{ when\,\, }}x \ne \frac{\pi }{2}\\ \,\,\,\,\,\,\,\,3,\,\,\,\,\,{\rm{ when\,\, }}x = \frac{\pi }{2} \end{array} \right.\]       be continuous at $$x = \frac{\pi }{2},$$  then $$k = ?$$

A $$3$$
B $$6$$
C $$12$$
D none of these
Answer :   $$6$$
Discuss Question

12. If the function $$f$$ defined on $$\left( {\frac{\pi }{6},\,\frac{\pi }{3}} \right)$$  by \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{\sqrt 2 \,\cos \,x - 1}}{{\cot \,x - 1}},\,x \ne \frac{\pi }{4}\\ k,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{\pi }{4} \end{array} \right.\]       is continuous, then $$k$$ is equal to:

A $$2$$
B $$\frac{1}{2}$$
C $$1$$
D $$\frac{1}{{\sqrt 2 }}$$
Answer :   $$\frac{1}{2}$$
Discuss Question

13. The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A all $$x$$
B All integer points
C No $$x$$
D $$x$$ which is not an integer
Answer :   No $$x$$
Discuss Question

14. Let $$f\left( x \right) = \frac{{1 - \sin \,x}}{{\sin \,2x}},\,x \ne \frac{\pi }{2}.$$     If $$f\left( x \right)$$  is continuous at $$x = \frac{\pi }{2}$$  then $$f\left( {\frac{\pi }{2}} \right)$$  should be :

A 1
B 0
C $$\frac{1}{2}$$
D none of these
Answer :   0
Discuss Question

15. The number of points at which the function $$f\left( x \right) = \frac{1}{{{{\log }_e}\left| x \right|}}$$    is discontinuous, is :

A $$1$$
B $$2$$
C $$3$$
D $$4$$
Answer :   $$3$$
Discuss Question

16. Let $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    where $$\left[ . \right]$$ denotes the greatest integer function. Then :

A $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$   does not exist
B $$f\left( x \right)$$  is continuous at $$x=0$$
C $$f'\left( 0 \right) = 1$$
D $$f\left( x \right)$$  is not differentiable at $$x=0$$
Answer :   $$f\left( x \right)$$  is continuous at $$x=0$$
Discuss Question

17. A value of $$c$$ for which conclusion of Mean Value Theorem holds for the function $$f\left( x \right) = {\log _e}x$$    on the interval $$\left[ {1,\,3} \right]$$  is :

A $${\log _3}e$$
B $${\log _e}3$$
C $$2\,{\log _3}e$$
D $$\frac{1}{2}\,{\log _3}e$$
Answer :   $$2\,{\log _3}e$$
Discuss Question

18. Let $$f:R \to R$$   be a function defined as \[f\left( x \right) = \left\{ \begin{array}{l} 5,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\,\,x \le 1\\ a + bx,\,\,{\rm{if}}\,\,\,\,{\rm{1}} < x < 3\\ b + 5x,\,\,{\rm{if}}\,\,\,\,3 \le x < 5\\ 30,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\,\,x \ge 5\,\, \end{array} \right.\]
then, $$f$$ is-

A continuous if $$a=5$$   and $$b=5$$
B continuous if $$a =-5$$   and $$b= 10$$
C continuous if $$a=0$$   and $$b=5$$
D not continuous for any values of $$a$$ and $$b$$
Answer :   not continuous for any values of $$a$$ and $$b$$
Discuss Question

19. If $$\theta $$ are the points of discontinuity of $$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {\cos ^{2n}}x$$     then the value of $$\sin \,\theta $$  is :

A $$0$$
B $$1$$
C $$ - 1$$
D $$\frac{1}{2}$$
Answer :   $$0$$
Discuss Question

20. If the functions $$f\left( x \right)$$  and $$g\left( x \right)$$  are continuous in $$\left[ {a,\,b} \right]$$  and differentiable in $$\left( {a,\,b} \right),$$  then equation \[\left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f\left( b \right)\\ g\left( a \right)\,\,\,\,\,g\left( b \right) \end{array} \right| = \left( {b - a} \right)\left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f'\left( x \right)\\ g\left( a \right)\,\,\,\,\,g'\left( x \right) \end{array} \right|\]        has in the interval $$\left[ {a,\,b} \right]$$

A at least one root
B exactly one root
C at most one root
D no root
Answer :   at least one root
Discuss Question


Practice More MCQ Question on Maths Section