12.
If the function $$f$$ defined on $$\left( {\frac{\pi }{6},\,\frac{\pi }{3}} \right)$$ by
\[f\left( x \right) = \left\{ \begin{array}{l}
\frac{{\sqrt 2 \,\cos \,x - 1}}{{\cot \,x - 1}},\,x \ne \frac{\pi }{4}\\
k,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{\pi }{4}
\end{array} \right.\] is continuous, then $$k$$ is equal to:
Since, $$f\left( x \right)$$ is continuous, then
$$\eqalign{
& \mathop {\lim }\limits_{x \to \frac{\pi }{4}} f\left( x \right) = f\left( {\frac{\pi }{4}} \right) \cr
& \mathop {\lim }\limits_{x \to \frac{\pi }{4}} \frac{{\sqrt 2 \,\cos \,x - 1}}{{\cot \,x - 1}} = k \cr} $$
Now by L-hospital’s rule
$$\eqalign{
& \mathop {\lim }\limits_{x \to \frac{\pi }{4}} \frac{{\sqrt 2 \,\sin \,x}}{{{\text{cose}}{{\text{c}}^2}\,x}} = k \cr
& \Rightarrow \frac{{\sqrt 2 \left( {\frac{1}{{\sqrt 2 }}} \right)}}{{{{\left( {\sqrt 2 } \right)}^2}}} = k \cr
& \Rightarrow k = \frac{1}{2} \cr} $$
13.
The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$ denotes the greatest integer function, is discontinuous at-
When $$x$$ is not an integer, both the functions $$\left[ x \right]$$ and $$\cos \left( {\frac{{2x - 1}}{2}} \right)\pi $$ are continuous.
$$\therefore \,f\left( x \right)$$ continuous on all non integral points.
For $$x = n \in I$$
$$\eqalign{
& \mathop {\lim }\limits_{x \to {n^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {n^ - }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr
& = \left( {n - 1} \right)\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr
& \mathop {\lim }\limits_{x \to {n^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {n^ + }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr
& = n\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr
& {\text{Also }}f\left( n \right) = n\,\cos \frac{{\left( {2n - 1} \right)\pi }}{2} = 0 \cr} $$
$$\therefore \,f$$ is continuous at all integral pts. as well.
Thus, $$f$$ is continuous everywhere.
14.
Let $$f\left( x \right) = \frac{{1 - \sin \,x}}{{\sin \,2x}},\,x \ne \frac{\pi }{2}.$$ If $$f\left( x \right)$$ is continuous at $$x = \frac{\pi }{2}$$ then $$f\left( {\frac{\pi }{2}} \right)$$ should be :
The function $$\log \left| x \right|$$ is not defined at $$x = 0.$$
So, $$x = 0$$ is a point of discontinuity .
Also, for $$f\left( x \right)$$ to be defined ; $$\log \left| x \right| \ne 0 \Rightarrow x \ne \pm 1$$
Hence, $$0,\,1,\, - 1$$ are three points of discontinuity.
16.
Let $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$ where $$\left[ . \right]$$ denotes the greatest integer function. Then :
A
$$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$ does not exist
B
$$f\left( x \right)$$ is continuous at $$x=0$$
C
$$f'\left( 0 \right) = 1$$
D
$$f\left( x \right)$$ is not differentiable at $$x=0$$
Answer :
$$f\left( x \right)$$ is continuous at $$x=0$$
17.
A value of $$c$$ for which conclusion of Mean Value Theorem holds for the function $$f\left( x \right) = {\log _e}x$$ on the interval $$\left[ {1,\,3} \right]$$ is :
Using Lagrange's Mean Value Theorem
Let $$f\left( x \right)$$ be a function defined on $$\left[ {a,\,b} \right]$$
Then
$$\eqalign{
& f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}.....({\text{i}}) \cr
& c\, \in \left[ {a,\,b} \right] \cr
& \therefore \,{\text{Given }}f\left( x \right) = {\log _e}x \cr
& \therefore \,f'\left( x \right) = \frac{1}{x} \cr
& \therefore {\text{ equation (i) become }}\frac{1}{c} = \frac{{f\left( 3 \right) - f\left( 1 \right)}}{{3 - 1}} \cr
& \Rightarrow \frac{1}{c} = \frac{{{{\log }_e}3 - {{\log }_e}1}}{2} = \frac{{{{\log }_e}3}}{2} \cr
& \Rightarrow c = \frac{2}{{{{\log }_e}3}} \cr
& \Rightarrow c = 2\,{\log _3}e \cr} $$
18.
Let $$f:R \to R$$ be a function defined as
\[f\left( x \right) = \left\{ \begin{array}{l}
5,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\,\,x \le 1\\
a + bx,\,\,{\rm{if}}\,\,\,\,{\rm{1}} < x < 3\\
b + 5x,\,\,{\rm{if}}\,\,\,\,3 \le x < 5\\
30,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\,\,x \ge 5\,\,
\end{array} \right.\]
then, $$f$$ is-
A
continuous if $$a=5$$ and $$b=5$$
B
continuous if $$a =-5$$ and $$b= 10$$
C
continuous if $$a=0$$ and $$b=5$$
D
not continuous for any values of $$a$$ and $$b$$
Answer :
not continuous for any values of $$a$$ and $$b$$
Let $$f\left( x \right)$$ is continuous at $$x = 1,$$ then
$$\eqalign{
& f\left( {{1^ - }} \right) = f\left( a \right) = f\left( {{1^ + }} \right) \cr
& \Rightarrow 5 = a + b......(a) \cr} $$
Let $$f\left( x \right)$$ is continuous at $$x = 3,$$ then
$$\eqalign{
& f\left( {{3^ - }} \right) = f\left( c \right) = f\left( {{3^ + }} \right) \cr
& \Rightarrow a + 3b = b + 15 \cr
& \Rightarrow a + 2b = 15......(b) \cr} $$
Solving (a) & (b) we get $$b= 10, \,\,a =-5$$
Now $$f\left( x \right)$$ is continuous at $$x = 5,$$ then
$$\eqalign{
& f\left( {{5^ - }} \right) = f\left( 5 \right) = f\left( {{5^ + }} \right) \cr
& \Rightarrow b + 25 = 30 \cr} $$
Which is not satisfied by $$a =-5$$ and $$b= 10.$$
Hence, $$f\left( x \right)$$ is not continuous for any values of $$a$$ and $$b$$
19.
If $$\theta $$ are the points of discontinuity of $$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {\cos ^{2n}}x$$ then the value of $$\sin \,\theta $$ is :
\[\begin{array}{l}
f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {{{\cos }^2}x} \right)^n}\\
= \left\{ \begin{array}{l}
0,\,\,\,0 \le {\cos ^2} x < 1\\
1,\,\,\,\,\,\,{\cos ^2}x = 1
\end{array} \right.\\
= \left\{ \begin{array}{l}
0,\,\,\,\,x \ne n\pi ,\,n\, \in \,I\\
1,\,\,\,\,x = n\pi ,\,n\, \in \,I
\end{array} \right.
\end{array}\]
Hence, $$f\left( x \right)$$ is discontinuous when $$x = n\pi ,\,n\, \in \,I$$
For this values of $$\theta ,\,\sin \,\theta = 0.$$
20.
If the functions $$f\left( x \right)$$ and $$g\left( x \right)$$ are continuous in $$\left[ {a,\,b} \right]$$ and differentiable in $$\left( {a,\,b} \right),$$ then equation \[\left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f\left( b \right)\\
g\left( a \right)\,\,\,\,\,g\left( b \right)
\end{array} \right| = \left( {b - a} \right)\left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f'\left( x \right)\\
g\left( a \right)\,\,\,\,\,g'\left( x \right)
\end{array} \right|\] has in the interval $$\left[ {a,\,b} \right]$$
Let \[h\left( x \right)\left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f\left( x \right)\\
g\left( a \right)\,\,\,\,\,g\left( x \right)
\end{array} \right| = f\left( a \right)g\left( x \right) - g\left( a \right)f\left( x \right)\]
Then, \[h'\left( x \right) = f\left( a \right)g'\left( x \right) - g\left( a \right)f'\left( x \right) = \left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f'\left( x \right)\\
g\left( a \right)\,\,\,\,\,g'\left( x \right)
\end{array} \right|\]
Since, $$f\left( x \right)$$ and $$g\left( x \right)$$ are continuous in $$\left[ {a,\,b} \right]$$ and differentiable in $$\left( {a,\,b} \right),$$ therefore $$h\left( x \right)$$ is also continuous $$\left[ {a,\,b} \right]$$ in and differentiable in $$\left( {a,\,b} \right).$$
So, by mean value theorem, there exists at least one real number $$c,\,a < c < b$$ for which $$h'\left( c \right) = \frac{{h\left( b \right) - h\left( a \right)}}{{b - a}},$$
$$\therefore \,h\left( b \right) - h\left( a \right) = \left( {b - a} \right)h'\left( c \right).....\left( {\text{i}} \right)$$
Here, \[h\left( a \right) = \left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f\left( a \right)\\
g\left( a \right)\,\,\,\,\,g\left( a \right)
\end{array} \right| = 0,\,\,h\left( b \right) = \left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f\left( b \right)\\
g\left( a \right)\,\,\,\,\,g\left( b \right)
\end{array} \right|\]
$$\therefore $$ From equation \[\left( {\rm{i}} \right),\,\left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f\left( b \right)\\
g\left( a \right)\,\,\,\,\,g\left( b \right)
\end{array} \right| = \left( {b - a} \right),\,\,h'\left( c \right) = \left( {b - a} \right)\left| \begin{array}{l}
f\left( a \right)\,\,\,\,\,f'\left( c \right)\\
g\left( a \right)\,\,\,\,\,g'\left( c \right)
\end{array} \right|\]