61.
If $$f\left( {2a - x} \right) = f\left( x \right)$$ and $$\int_0^a {f\left( x \right)dx = \lambda } $$ then $$\int_0^{2a} {f\left( x \right)dx} $$ is :
63.
Let $$f\left( x \right)$$ be a continuous function such that $$f\left( x \right)$$ does not vanish for all $$x\, \in \,R.$$ If $$\int_2^3 {f\left( x \right)} dx = \int_{ - 2}^3 {f\left( x \right)} dx$$ then $$f\left( x \right),\,x\, \in \,R,$$ is :
65.
If the area enclosed by $${y^2} = 4ax$$ and line $$y = ax$$ is $$\frac{1}{3}$$ sq. units , then the area enclosed by $$y = 4x$$ with same parabola is :
Point of intersection of $${y^2} = 4ax$$ and $$y = ax$$ are $$\left( {0,\,0} \right)$$ and $$\left( {\frac{4}{a},\,4} \right)$$
$$\eqalign{
& {\text{Given,}}\,\int\limits_0^4 {\left[ {\frac{y}{a} - \frac{{{y^2}}}{{4a}}} \right]} dy = \frac{1}{3} \cr
& \Rightarrow \frac{8}{a} - \frac{1}{{12a}} \times 64 = \frac{1}{3} \cr
& \Rightarrow \frac{8}{{3a}} = \frac{1}{3} \cr
& \Rightarrow a = 8 \cr} $$
So, the parabola is $${y^2} = 32x$$
Area enclosed by $$y = 4x$$ is $$\int\limits_0^8 {\left[ {\frac{y}{4} - \frac{{{y^2}}}{{32}}} \right]} dy = \left[ {\frac{{{y^2}}}{8} - \frac{{{y^3}}}{{96}}} \right]_0^8 = \frac{8}{3}$$
66.
Let $$f\left( x \right) = $$ maximum $$\left\{ {x + \left| x \right|,\,x - \left[ x \right]} \right\},$$ where $$\left[ x \right] = $$ the greatest integer $$ \leqslant x.$$ Then $$\int_{ - 2}^2 {f\left( x \right)dx} $$ is equal to :
67.
If $$f\left( x \right) = f\left( {a + x} \right)$$ and $$\int_0^a {f\left( x \right)} dx = p$$ then $$\int_a^{na} {f\left( x \right)dx} $$ is equal to :
Since, $$f\left( x \right) = f\left( {a + x} \right),$$ therefore $$a$$ is the period of $$f\left( x \right)$$
$$\eqalign{
& {\text{Again, }}\int_{ma}^{na} {f\left( x \right)dx = \left( {n - m} \right)} \int_0^a {f\left( x \right)dx} \cr
& {\text{Here, }}\int_a^{na} {f\left( x \right)dx = \left( {n - 1} \right)} \int_0^a {f\left( x \right)dx} \cr
& = \left( {n - 1} \right)p \cr
& {\text{Hence, answer is option B}}{\text{.}} \cr} $$
68.
Let $$f\left( x \right) = \frac{{{e^x} + 1}}{{{e^x} - 1}}$$ and $$\int_0^1 {\frac{{{e^x} + 1}}{{{e^x} - 1}}.x\,dx} = \lambda .$$ Then $$\int_{ - 1}^1 {tf\left( t \right)dt} $$ is equal to :
$$\eqalign{
& \phi \left( t \right) = tf\left( t \right) = t.\frac{{{e^t} + 1}}{{{e^t} - 1}} \cr
& {\text{So, }}\phi \left( { - t} \right) = - t.\frac{{{e^{ - t}} + 1}}{{{e^{ - t}} - 1}} = t.\frac{{{e^t} + 1}}{{{e^t} - 1}} \cr
& \therefore \phi \left( t \right) = \phi \left( { - t} \right){\text{.}}\,{\text{Hence, }}\phi \left( t \right){\text{ is an even function}} \cr
& \therefore \int_{ - 1}^1 {\phi \left( t \right)dt} = 2\int_0^1 {\phi \left( t \right)dt} = 2\lambda \cr} $$
69.
Let $$\int_0^a {f\left( x \right)dx} = \lambda $$ and $$\int_0^a {f\left( {2a - x} \right)dx} = \mu .$$ Then $$\int_0^{2a} {f\left( x \right)dx} $$ is equal to :