151.
Let $$f\left( x \right)$$ be a continuous function such that the area bounded by the curve $$y = f\left( x \right),$$ the $$x$$-axis and the two ordinates $$x=0$$ and $$x=a$$ is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a.$$ Then $$f\left( {\frac{\pi }{2}} \right)$$ is :
Given, equation of the circle is $${x^2} + {y^2} = 9$$
$$\therefore $$ Area of the smaller segment cut off from the circle $${x^2} + {y^2} = 9$$ by $$x = 1,$$ is given by
$$\eqalign{
& A = 2\int_1^3 {\sqrt {9 - {x^2}} } dx \cr
& \,\,\,\,\, = 2.\frac{1}{2}\left[ {x\sqrt {9 - {x^2}} + 9\,{{\sin }^{ - 1}}\frac{x}{3}} \right]_1^3 \cr
& \,\,\,\,\, = \left[ {3.\sqrt {9 - 9} + 9\,{{\sin }^{ - 1}}\left( {\frac{3}{3}} \right) - 1.\sqrt {9 - 1} - 9\,{{\sin }^{ - 1}}\left( {\frac{1}{3}} \right)} \right] \cr
& \,\,\,\,\, = \left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}} \cr} $$
153.
If the ordinate $$x = a$$ divides the area bounded by $$x$$-axis, part of the curve $$y = 1 + \frac{8}{{{x^2}}}$$ and the ordinates $$x = 2,\,x = 4$$ into two equal parts, then $$a$$ is equal to :
Area of required region $$AOBC :$$
$$\eqalign{
& = \int\limits_0^1 {x\,dx} + \int\limits_1^e {\frac{1}{x}dx} \cr
& = \frac{1}{2} + 1 \cr
& = \frac{3}{2}\,\,{\text{sq}}{\text{. units}} \cr} $$
155.
Let $$f\left( x \right)$$ be a continuous function such that the area bounded by the curve $$y = f\left( x \right),\,x$$ -axis and the lines $$x = 0$$ and $$x = a$$ is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a,$$ then $$f\left( {\frac{\pi }{2}} \right) = ?$$