51. The system of equations
$$\eqalign{ & 2x - y + z = 0 \cr & x - 2y + z = 0 \cr & \lambda x - y + 2z = 0 \cr} $$
has infinite number of nontrivial solutions for

A $$\lambda = 1$$
B $$\lambda = 5$$
C $$\lambda = - 5$$
D no real value of $$\lambda $$
Answer :   $$\lambda = 5$$
Discuss Question

52. Let $$A$$ be a square matrix all of whose entries are integers. Then which one of the following is true?

A If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ exists but all its entries are not necessarily integers
B If det $$A \ne \pm 1,$$  then $${A^{ - 1}}$$ exists and all its entries are non integers
C If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ exists but all its entries are integers
D If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ need not exists
Answer :   If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ exists but all its entries are integers
Discuss Question

53. Let $$A, B , C, D$$   be (not necessarily square) real matrices such that $$A^T = BCD; B^T = CDA; C^T = DAB$$        and $$DT = ABC$$   for the matrix $$S = ABCD, S^3 =$$

A $$I$$
B $$S^2$$
C $$S$$
D $$O$$
Answer :   $$S$$
Discuss Question

54. If \[A = \left[ {\begin{array}{*{20}{c}} 1&2&{ - 1}\\ { - 1}&1&2\\ 2&{ - 1}&1 \end{array}} \right],\]     then $$\det\left( {adj\left( {adj\,A} \right)} \right)$$    is

A $${\left( {14} \right)^4}$$
B $${\left( {14} \right)^3}$$
C $${\left( {14} \right)^2}$$
D $${\left( {14} \right)^1}$$
Answer :   $${\left( {14} \right)^4}$$
Discuss Question

55. The matrix \[A = \left[ {\begin{array}{*{20}{c}} { - 5}&{ - 8}&0\\ 3&5&0\\ 1&2&{ - 1} \end{array}} \right]\]

A idempotent matrix
B involutory matrix
C nilpotent matrix
D None of these
Answer :   involutory matrix
Discuss Question

56. Consider the system of linear equations;
$$\eqalign{ & {x_1} + 2{x_2} + {x_3} = 3 \cr & 2{x_1} + 3{x_2} + {x_3} = 3 \cr & 3{x_1} + 5{x_2} + 2{x_3} = 1 \cr} $$
The system has

A exactly 3 solutions
B a unique solution
C no solution
D infinite number of solutions
Answer :   no solution
Discuss Question

57. For what value of $$p,$$ is the system of equations :
$$\eqalign{ & {p^3}x + {\left( {p + 1} \right)^3}y = {\left( {p + 2} \right)^3} \cr & px + \left( {p + 1} \right)y = p + 2 \cr & x + y = 1 \cr} $$
Consistent ?

A $$p = 0$$
B $$p = 1$$
C $$p = - 1$$
D For all $$p > 1$$
Answer :   $$p = - 1$$
Discuss Question

58. In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of the third column consists of sum of four terms. Then it can be decomposed into $$n$$ determinants, where $$n$$ has the value

A 1
B 9
C 16
D 24
Answer :   24
Discuss Question

59. Let $$\lambda $$ and $$\alpha $$ be real. The set of all values of $$x$$ for which the system of linear equations
$$\eqalign{ & \lambda x + \left( {\sin \alpha } \right)y + \left( {\cos \alpha } \right)z = 0 \cr & x + \left( {\cos \alpha } \right)y + \left( {\sin \alpha } \right)z = 0 \cr & - x + \left( {\sin \alpha } \right) - \left( {\cos \alpha } \right)z = 0 \cr} $$
has a non-trivial solution, is

A $$\left[ {0,\sqrt 2 } \right]$$
B $$\left[ { - \sqrt 2 , 0 } \right]$$
C $$\left[ { - \sqrt 2 ,\sqrt 2 } \right]$$
D None of these
Answer :   $$\left[ { - \sqrt 2 ,\sqrt 2 } \right]$$
Discuss Question

60. The rank of the matrix \[\left[ {\begin{array}{*{20}{c}} 4&1&0&0 \\ 3&0&1&0 \\ 5&0&0&1 \end{array}} \right]\]   is

A 4
B 3
C 2
D None of these
Answer :   3
Discuss Question


Practice More MCQ Question on Maths Section