21.
Let \[A = \left[ {\begin{array}{*{20}{c}}
5&6&1\\
2&{ - 1}&5
\end{array}} \right].\] Let there exist a matrix $$B$$ such that \[AB = \,\left[ {\begin{array}{*{20}{c}}
{35}&{49}\\
{29}&{13}
\end{array}} \right].\] What is $$B$$ equal to ?
A
\[\left[ {\begin{array}{*{20}{c}}
5&1&4\\
2&{ 6}&3
\end{array}} \right]\]
B
\[\left[ {\begin{array}{*{20}{c}}
2&6&3\\
5&{1}&4
\end{array}} \right]\]
22.
Using the factor theorem it is found that $$b + c, c + a$$ and $$a + b$$ are three factors of the determinant \[\left| {\begin{array}{*{20}{c}}
{ - 2a}&{a + b}&{a + c} \\
{b + a}&{ - 2b}&{b + c} \\
{c + a}&{c + b}&{ - 2c}
\end{array}} \right|.\] The other factor in the value of the determinant is
Use $${C_3} \to {C_3} - {C_2},{C_2} \to {C_2} - {C_1}.$$
24.
If $$x, y, z$$ are integers in A.P., lying between 1 and 9, and $$x51, y41$$ and $$z31$$ are three-digit numbers then the value of \[\left| {\begin{array}{*{20}{c}}
5&4&3 \\
{x51}&{y41}&{z31} \\
x&y&z
\end{array}} \right|\] is
27.
Let \[A = \left( \begin{array}{l}
\,\,0\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\, - 1\\
\,\,0\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,0\\
- 1\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,0
\end{array} \right).\] The only correct statement about the matrix $$A$$ is
A
$${A^2} = I$$
B
$$A = \left( { - 1} \right)I,$$ where $$I$$ is a unit matrix
$$\eqalign{
& \because {B^n} - A = I \cr
& \therefore {B^n} = I + A \cr} $$
\[\begin{array}{l}
{B^n} = \left[ {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{26}&{26}&{18}\\
{25}&{37}&{17}\\
{52}&{39}&{50}
\end{array}} \right]\\
{B^n} = \left[ {\begin{array}{*{20}{c}}
{27}&{26}&{18}\\
{25}&{38}&{17}\\
{52}&{39}&{51}
\end{array}} \right]\\
{\rm{or, }}{\left[ {\begin{array}{*{20}{c}}
1&4&2\\
3&5&1\\
7&1&6
\end{array}} \right]^n} = \left[ {\begin{array}{*{20}{c}}
{27}&{26}&{18}\\
{25}&{38}&{17}\\
{52}&{39}&{51}
\end{array}} \right]\,\,\,\,\,.....\left( {\rm{i}} \right)
\end{array}\]
$$\therefore n \ne 1$$
Now put $$n = 2,$$ then
\[\begin{array}{l}
{B^2} = {\left[ {\begin{array}{*{20}{c}}
1&4&2\\
3&5&1\\
7&1&6
\end{array}} \right]^2} = \left[ {\begin{array}{*{20}{c}}
1&4&2\\
3&5&1\\
7&1&6
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&4&2\\
3&5&1\\
7&1&6
\end{array}} \right]\\
= \left[ {\begin{array}{*{20}{c}}
{27}&{26}&{18}\\
{25}&{38}&{17}\\
{52}&{39}&{51}
\end{array}} \right]
\end{array}\]
Which is equal to R.H.S. of eq. (i).
∴ $$n = 2$$
29.
If $$P$$ is a $$3 \times 3$$ matrix such that $${P^T} = 2P + I,$$ where $${P^T}$$ is the transpose of $$P$$ and $$I$$ is the $$3 \times 3$$ identity matrix, then there exists column matrix \[X = \left[ \begin{array}{l}
x\\
y\\
z
\end{array} \right] \ne \left[ \begin{array}{l}
0\\
0\\
0
\end{array} \right]\] such that
A
\[PX = \left[ \begin{array}{l}
0\\
0\\
0
\end{array} \right]\]