EMMCQ.com
Maths
Physics
Chemistry
Biology
Engineering Exams
JEE Main
JEE Advanced
WBJEE
MHTCET
BITSAT
VITEEE
COMEDK
GUJCET
KEAM
Medical Exams
NEET UG
Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Home
Maths
Algebra
Matrices and Determinants
261.
If \[A = \left[ {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right],\] then $$A^{16}$$ is equal to :
A
\[\left[ {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right]\]
B
\[\left[ {\begin{array}{*{20}{c}} 0&{1}\\ 1&0 \end{array}} \right]\]
C
\[\left[ {\begin{array}{*{20}{c}} { - 1}&0\\ 0&1 \end{array}} \right]\]
D
\[\left[ {\begin{array}{*{20}{c}} 1&{ 0}\\ 0&1 \end{array}} \right]\]
Answer :
\[\left[ {\begin{array}{*{20}{c}} 1&{ 0}\\ 0&1 \end{array}} \right]\]
View Solution
Discuss Question
\[\begin{array}{l} {\rm{We \,\,have, }}\,\,A = \left[ {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right]\\ {\rm{Now, }}\,\,{A^2} = A.A = \left( {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { - 1}&0\\ 0&{ - 1} \end{array}} \right) = - I\\ {\rm{where }}\,\,I = \left( {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right){\rm{ is\,\, identity\,\, matrix}} \end{array}\]
$$\eqalign{ & {\left( {{A^2}} \right)^8} = {\left( { - I} \right)^8} = I. \cr & {\text{Hence, }}{A^{16}} = I \cr} $$
262.
Let $$a, b, c$$ be any real numbers. Suppose that there are real numbers $$x, y, z$$ not all zero such that $$x = cy + bz, y = az + cx,$$ and $$z = bx + ay.$$ Then $${a^2} + {b^2} + {c^2} + 2abc$$ is equal to
A
2
B
$$- 1$$
C
0
D
1
Answer :
1
View Solution
Discuss Question
The given equations are
$$\eqalign{ & - x + cy + bz = 0 \cr & cx - y + az = 0 \cr & bx + ay - z = 0 \cr} $$
$$\because \,\,x,y,z$$ are not all zero
∴ The above system should not have unique (zero) solution
$$ \Rightarrow \,\,\Delta = 0$$
\[ \Rightarrow \,\left| \begin{array}{l} - 1\,\,\,\,\,\,\,\,c\,\,\,\,\,\,\,\,\,b\\ \,\,c\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,a\\ \,\,b\,\,\,\,\,\,\,\,\,a\,\,\,\,\,\, - 1 \end{array} \right| = 0\]
$$\eqalign{ & \Rightarrow \,\, - 1\left( {1 - {a^2}} \right) - c\left( { - c - ab} \right) + b\left( {ac + b} \right) = 0 \cr & \Rightarrow \,\, - 1 + {a^2} + {b^2} + {c^2} + 2abc = 0 \cr & \Rightarrow \,\,{a^2} + {b^2} + {c^2} + 2abc = 1 \cr} $$
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Practice More MCQ Question on
Maths
Section
Algebra
Sequences and Series
Quadratic Equation
Complex Number
Matrices and Determinants
Permutation and Combination
Binomial Theorem
Mathematical Induction
Mathematical Reasoning
Statistics and Probability
Statistics
Probability
Calculus
Sets and Relations
Function
Limits
Continuity
Differentiability and Differentiation
Application of Derivatives
Differential Equations
Indefinite Integration
Definite Integration
Application of Integration
Geometry
Straight Lines
Circle
Parabola
Ellipse
Hyperbola
Locus
3D Geometry and Vectors
Three Dimensional Geometry
Trigonometry
Trigonometric Ratio and Identities
Trignometric Equations
Properties and Solutons of Triangle
Inverse Trigonometry Function