For any square matrix $$X,$$ we have $$X\left( {adj\,X} \right) = \left| X \right|{I_n}$$
Taking $$X = adj\,A,$$ we get
$$\eqalign{
& \left( {adj\,A} \right)\left[ {adj\left( {adj\,A} \right)} \right] = \left| {adj\,A} \right|{I_n} \cr
& \Rightarrow \left( {adj\,A} \right)\left[ {adj\left( {adj\,A} \right)} \right] = {\left| A \right|^{n - 1}}{I_n} \cr
& \left[ {\because \left| {adj\,A} \right| = {{\left| A \right|}^{n - 1}}} \right] \cr
& \Rightarrow \left( {A\,adj\,A} \right)\left[ {adj\left( {adj\,A} \right)} \right] = {\left| A \right|^{n - 1}}A \cr
& \left[ {\because A\,{I_n} = A} \right] \cr
& \left( {\left| A \right|{I_n}} \right)\left( {adj\left( {adj\,A} \right)} \right) = {\left| A \right|^{n - 1}}A \cr
& \Rightarrow adj\left( {adj\,A} \right) = {\left| A \right|^{n - 2}}A \cr} $$
242.
Let $$P = \left[ {{a_{ij}}} \right]{\text{be a 3}} \times {\text{3}}$$ matrix and let $$Q = \left[ {{b_{ij}}} \right],{\text{where }}{b_{ij}} = {2^{i + j}}{a_{ij}}\,{\text{for 1}} \leqslant i,j \leqslant 3.$$ If the determinant of $$P$$ is 2, then the determinant of the matrix $$Q$$ is
We know that $$\left| {{\text{adj}}\left( {{\text{adj}}\,A} \right)} \right| = {\left| {{\text{adj}}\,A} \right|^{2 - 1}}$$
$$ = {\left| A \right|^{2 - 1}} = \left| A \right|$$
∴ Both the statements are true and statement - 2 is a correct explantion for statement - 1 .
245.
If \[\left| {\begin{array}{*{20}{c}}
{{x^2} + x}&{3x - 1}&{ - x + 3}\\
{2x + 1}&{2 + {x^2}}&{{x^3} - 3}\\
{x - 3}&{{x^2} + 4}&{3x}
\end{array}} \right| = {a_0} + {a_1}x + {a_2}{x^2} + ..... + {a_7}{x^7},\] then the value of $$a_0$$ is
246.
Let $$A = {\left[ {{a_{ij}}} \right]_{m\, \times m}}$$ be a matrix and $$C = {\left[ {{c_{ij}}} \right]_{m\, \times m}}$$ be another matrix where $${c_{ij}}.$$ is the cofactor of $${a_{ij}}.$$ Then, what is the value of $$\left| {AC} \right|\,?$$
Let $$A = {\left[ {{a_{ij}}} \right]_{m\, \times m}}$$ be a matrix and $$C = {\left[ {{c_{ij}}} \right]_{m\, \times m}}$$ be another matrix where $${c_{ij}}$$ is the cofactor of $${a_{ij}}.$$
∴ The value of $$\left| {AC} \right| = {\left| A \right|^{m + 1}}$$
247.
If \[\left[ {\begin{array}{*{20}{c}}
{x + y}&y \\
{2x}&{x - y}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2 \\
{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
2
\end{array}} \right]\] then $$x \cdot y$$ is equal to
250.
The value of the determinant \[\left| {\begin{array}{*{20}{c}}
{^5{C_0}}&{^5{C_3}}&{14} \\
{^5{C_1}}&{^5{C_4}}&1 \\
{^5{C_2}}&{^5{C_5}}&1
\end{array}} \right|\] is