Let $$\left| A \right| = 8$$ and $$A$$ is a square matrix of order 3.
We know that $$\left| {adj\,A} \right| = {\left| A \right|^{n - 1}}.I$$ where $$'n'$$ is the order of the matrix $$A.$$
$$\therefore \left| {adj\,A} \right| = {8^{3 - 1}} = {8^2} = 64$$
222.
The rank of the matrix \[\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
\lambda &2&4 \\
2&{ - 3}&1
\end{array}} \right]\] is $$3$$ if
224.
If the matrix $$B$$ is the adjoint of the square matrix $$A$$ and $$\alpha $$ is the value of the determinant of $$A,$$ then what is $$AB$$ equal to ?
Since, adjoint of the square matrix $$A$$ is $$B$$
$$\eqalign{
& \Rightarrow \,\frac{B}{{\left| A \right|}} = {A^{ - 1}} \cr
& \Rightarrow \,\frac{{AB}}{{\left| A \right|}} = A{A^{ - 1}} = I \cr
& \Rightarrow \,AB = \left| A \right|I \cr
& \Rightarrow \,AB = \alpha I \cr} $$
225.
If \[A = \left[ {\begin{array}{*{20}{c}}
\alpha &\beta \\
\gamma &\delta
\end{array}} \right]\] such that $$A^2$$ is a two–rowed unit matrix, then $$\delta $$ is equal to
226.
What is the value of the determinant \[\left| {\begin{array}{*{20}{c}}
1&{bc}&{a\left( {b + c} \right)}\\
1&{ca}&{b\left( {c + a} \right)}\\
1&{ab}&{c\left( {a + b} \right)}
\end{array}} \right|\,?\]
228.
If \[A = \left[ {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0\\
a&b&{ - 1}
\end{array}} \right]\] and $$I$$ is the unit matrix of order 3, then $${A^2} + 2{A^4} + 4{A^6}$$ is equal to