102.
The number of values of $$k$$ for which the system of equations $$\left( {k + 1} \right)x + 8y = 4k;kx + \left( {k + 3} \right)y = 3k - 1$$ has infinitely many solutions is
For existence of a solution of the first system,
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = 0.\]
The second system will have a nontrivial solution if we can prove that
\[\left| {\begin{array}{*{20}{c}}
{b + c}&{c + a}&{a + b} \\
{c + a}&{a + b}&{b + c} \\
{a + b}&{b + c}&{c + a}
\end{array}} \right| = 0.\]
Establish \[\left| {\begin{array}{*{20}{c}}
{b + c}&{c + a}&{a + b} \\
{c + a}&{a + b}&{b + c} \\
{a + b}&{b + c}&{c + a}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = 0.\]
Remember that the existence of one nontrivial solution implies existence of infinite number of non-trivial solutions
104.
If $$C = 2\cos \theta ,$$ then the value of the determinant \[\Delta = \left[ {\begin{array}{*{20}{c}}
C&1&0\\
1&C&1\\
6&1&C
\end{array}} \right]\] is
A
$$\frac{{2\,{{\sin }^2}2\theta }}{{\sin \theta }}$$
B
$$8\,{\cos ^3}\theta - 4\cos \theta + 6$$
C
$$\frac{{2\,{{\sin }}2\theta }}{{\sin \theta }}$$
107.
If $$\sqrt { - 1} = i,$$ and $$\omega $$ is a non-real cube root of unity then the value of \[\left| {\begin{array}{*{20}{c}}
1&{{\omega ^2}}&{1 + i + {\omega ^2}} \\
{ - i}&{ - 1}&{ - 1 - i + \omega } \\
{1 - i}&{{\omega ^2} - 1}&{ - 1}
\end{array}} \right|\] is equal to
110.
If $$A$$ and $$B$$ be two square matrices of order $$\lambda $$ whose all the elements are essentially positive integers then the minimum value of $$tr\left( {A{B^2}} \right)$$ is equal to