Question

$$\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {1 - \cos \,2\left( {x - 1} \right)} }}{{x - 1}}$$

A. exists and it is $$\sqrt 2 $$
B. exists and it is $$ - \sqrt 2 $$
C. does not exist because $$x - 1 \to 0$$
D. does not exist because $${\text{LH}}\,{\text{lim}} \ne {\text{RH}}\,{\text{lim}}$$  
Answer :   does not exist because $${\text{LH}}\,{\text{lim}} \ne {\text{RH}}\,{\text{lim}}$$
Solution :
$$\eqalign{ & {\text{Limit}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left| {\sin \left( {x - 1} \right)} \right|}}{{x - 1}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left| {\sin \,h} \right|}}{h}{\text{ or }}\mathop {\lim }\limits_{h \to 0} \frac{{\left| {\sin \,h} \right|}}{{ - h}} \cr & \therefore {\text{ RH limit}} = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \,h}}{h} = 1{\text{ and LH limit}} = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \,h}}{{ - h}} = - 1 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section