Question
Masses $${M_A}$$ and $${M_B}$$ hanging from the ends of strings of lengths $${L_A}$$ and $${L_B}$$ are executing simple harmonic motions. If their frequencies are $${f_A} = 2{f_B},$$ then
A.
$${L_A} = 2{L_B}\,{\text{and}}\,{M_A} = \frac{{{M_B}}}{2}$$
B.
$${L_A} = 4{L_B}$$ regardless of masses
C.
$${L_A} = \frac{{{L_B}}}{4}$$ regardless of masses
D.
$${L_A} = 2{L_B}\,{\text{and}}\,{M_A} = 2{M_B}$$
Answer :
$${L_A} = \frac{{{L_B}}}{4}$$ regardless of masses
Solution :
$$\eqalign{
& {f_A} = \frac{1}{{2\pi }}\sqrt {\frac{g}{{{L_A}}}} \,\,{\text{and}}\,\,{f_B} = \frac{{{f_A}}}{2} = \frac{1}{{2\pi }}\sqrt {\frac{g}{{{L_B}}}} \cr
& \therefore \frac{{{f_A}}}{{\frac{{{f_A}}}{2}}} = \frac{1}{{2\pi }}\sqrt {\frac{g}{{{L_A}}}} \times 2\pi \sqrt {\frac{{{L_B}}}{g}} \Rightarrow 2 = \sqrt {\frac{{{L_B}}}{{{L_A}}}} \cr
& \Rightarrow 4 = \frac{{{L_B}}}{{{L_A}}},\,{\text{regardless of mass}}{\text{.}} \cr} $$