Question

$$\int {{{\left\{ {\frac{{\left( {\log \,x - 1} \right)}}{{1 + {{\left( {\log \,x} \right)}^2}}}} \right\}}^2}dx} $$     is equal to-

A. $$\frac{{\log \,x}}{{{{\left( {\log \,x} \right)}^2} + 1}} + C$$
B. $$\frac{x}{{{x^2} + 1}} + C$$
C. $$\frac{{x{e^x}}}{{1 + {x^2}}} + C$$
D. $$\frac{x}{{{{\left( {\log \,x} \right)}^2} + 1}} + C$$  
Answer :   $$\frac{x}{{{{\left( {\log \,x} \right)}^2} + 1}} + C$$
Solution :
$$\eqalign{ & \int {\frac{{{{\left( {\log \,x - 1} \right)}^2}}}{{{{\left( {1 + {{\left( {\log \,x} \right)}^2}} \right)}^2}}}dx} \cr & = \int {\frac{{1 + {{\left( {\log \,x} \right)}^2} - 2\,\log \,x}}{{{{\left[ {1 + {{\left( {\log \,x} \right)}^2}} \right]}^2}}}} dx \cr & = \int {\left[ {\frac{1}{{\left( {1 + {{\left( {\log \,x} \right)}^2}} \right)}} - \frac{{2\,\log \,x}}{{{{\left( {1 + {{\left( {\log \,x} \right)}^2}} \right)}^2}}}} \right]} dx \cr & = \int {\left[ {\frac{{{e^t}}}{{1 + {t^2}}} - \frac{{2t\,{e^t}}}{{{{\left( {1 + {t^2}} \right)}^2}}}} \right]} dt\,\, \cr & {\text{put }}\log \,x = t\,\, \Rightarrow dx = {e^{t\,}}dt \cr & = \int {{e^t}} \left[ {\frac{1}{{1 + {t^2}}} - \frac{{2t}}{{{{\left( {1 + {t^2}} \right)}^2}}}} \right]dt \cr & \left[ {{\text{which is of the form }}\int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} } \right] \cr & = \frac{{{e^t}}}{{1 + {t^2}}} + C\,\,\,\, = \frac{x}{{1 + {{\left( {\log \,x} \right)}^2}}} + C \cr} $$

Releted MCQ Question on
Calculus >> Indefinite Integration

Releted Question 1

The value of the integral $$\int {\frac{{{{\cos }^3}x + {{\cos }^5}x}}{{{{\sin }^2}x + {{\sin }^4}x}}dx} $$    is-

A. $$\sin \,x - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
B. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + c$$
C. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
D. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + 5\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
Releted Question 2

If $$\int_{\sin \,x}^1 {{t^2}f\left( t \right)dt = 1 - \sin \,x} ,$$      then $$f\left( {\frac{1}{{\sqrt 3 }}} \right)$$   is-

A. $$\frac{1}{3}$$
B. $${\frac{1}{{\sqrt 3 }}}$$
C. $$3$$
D. $$\sqrt 3 $$
Releted Question 3

Solve this $$\int {\frac{{{x^2} - 1}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx} = ?$$

A. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^2}}} + C$$
B. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^3}}} + C$$
C. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{x} + C$$
D. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$
Releted Question 4

Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$  equals-

A. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} - {e^{2x}} + 1}}{{{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} + {e^x} + 1}}{{{e^{2x}} - {e^x} + 1}}} \right) + C$$
C. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$
D. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} + {e^{2x}} + 1}}{{{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$

Practice More Releted MCQ Question on
Indefinite Integration


Practice More MCQ Question on Maths Section