Question

Locus of centroid of the triangle whose vertices are $$\left( {a\,\cos \,t,\,a\,\sin \,t} \right),\,\left( {b\,\sin \,t,\, - b\,\cos \,t} \right)$$        and (1, 0), where $$t$$ is a parameter, is-

A. $${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
B. $${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
C. $${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$  
D. $${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
Answer :   $${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
Solution :
$$\eqalign{ & x = \frac{{a\,\cos \,t + b\,\sin \,t + 1}}{3} \Rightarrow a\,\cos \,t + b\,\sin \,t = 3x - 1 \cr & y = \frac{{a\,\sin \,t - b\,\cos \,t}}{3} \Rightarrow a\,\sin \,t - b\,\cos \,t = 3y \cr} $$
Squaring & adding, $${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section