Solution :
Suppose a light ray enters at $$A$$ and refracted beam is $$AB.$$ At the lateral face, the angle of incidence is $$\theta .$$ For no refraction at this face, $$\theta > C$$
$$\sin \theta > \sin C$$

$$\eqalign{
& {\text{but}}\,\,\theta + r = {90^ \circ }\,\,\left( {{\text{According to geometry of figure}}} \right) \cr
& \Rightarrow \theta = \left( {{{90}^ \circ } - r} \right) \cr
& \therefore \sin \left( {{{90}^ \circ } - r} \right) > \sin C \cr
& {\text{or}}\,\,\cos r > \sin C\,......\left( {\text{i}} \right) \cr} $$
Now from Snell’s law,
$$\eqalign{
& \mu = \frac{{\sin i}}{{\sin r}} \cr
& \Rightarrow \sin r = \frac{{\sin i}}{\mu } \cr} $$
As from trigonometry,
$$\eqalign{
& \cos r = \sqrt {1 - {{\sin }^2}r} \cr
& \therefore \cos r = \sqrt {\left( {1 - \frac{{{{\sin }^2}i}}{{{\mu ^2}}}} \right)} \cr} $$
$$\therefore $$ Eq. (i) gives,
$$\eqalign{
& \sqrt {1 - \frac{{{{\sin }^2}i}}{{{\mu ^2}}}} > \sin C \cr
& \Rightarrow 1 - \frac{{{{\sin }^2}i}}{{{\mu ^2}}} > {\sin ^2}C \cr
& {\text{Also}}\,\,\sin C = \frac{1}{\mu } \cr
& \therefore 1 - \frac{{{{\sin }^2}i}}{{{\mu ^2}}} > \frac{1}{{{\mu ^2}}} \cr} $$
$$\eqalign{
& {\text{or}}\,\,1 > \frac{1}{{{\mu ^2}}} + \frac{{{{\sin }^2}i}}{{{\mu ^2}}} \cr
& {\text{or}}\,\frac{1}{{{\mu ^2}}}\left( {{{\sin }^2}i + 1} \right) < 1 \cr
& {\text{or}}\,\,{\mu ^2} > {\sin ^2}i + 1 \cr} $$
The maximum value of $$\sin i$$ is 1. So,
$$\eqalign{
& \therefore {\mu ^2} > 2 \cr
& {\text{or}}\,\,\mu > \sqrt 2 \cr} $$